MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monfval Unicode version

Theorem monfval 13886
Description: Definition of a monomorphism in a category. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
ismon.b  |-  B  =  ( Base `  C
)
ismon.h  |-  H  =  (  Hom  `  C
)
ismon.o  |-  .x.  =  (comp `  C )
ismon.s  |-  M  =  (Mono `  C )
ismon.c  |-  ( ph  ->  C  e.  Cat )
Assertion
Ref Expression
monfval  |-  ( ph  ->  M  =  ( x  e.  B ,  y  e.  B  |->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x ) 
|->  ( f ( <.
z ,  x >.  .x.  y ) g ) ) } ) )
Distinct variable groups:    f, g, x, y, z, B    ph, f,
g, x, y, z    C, f, g, x, y, z    f, H, g, x, y, z    .x. , f,
g, x, y, z   
f, M
Allowed substitution hints:    M( x, y, z, g)

Proof of Theorem monfval
Dummy variables  b 
c  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismon.s . 2  |-  M  =  (Mono `  C )
2 ismon.c . . 3  |-  ( ph  ->  C  e.  Cat )
3 fvex 5683 . . . . . 6  |-  ( Base `  c )  e.  _V
43a1i 11 . . . . 5  |-  ( c  =  C  ->  ( Base `  c )  e. 
_V )
5 fveq2 5669 . . . . . 6  |-  ( c  =  C  ->  ( Base `  c )  =  ( Base `  C
) )
6 ismon.b . . . . . 6  |-  B  =  ( Base `  C
)
75, 6syl6eqr 2438 . . . . 5  |-  ( c  =  C  ->  ( Base `  c )  =  B )
8 fvex 5683 . . . . . . 7  |-  (  Hom  `  c )  e.  _V
98a1i 11 . . . . . 6  |-  ( ( c  =  C  /\  b  =  B )  ->  (  Hom  `  c
)  e.  _V )
10 simpl 444 . . . . . . . 8  |-  ( ( c  =  C  /\  b  =  B )  ->  c  =  C )
1110fveq2d 5673 . . . . . . 7  |-  ( ( c  =  C  /\  b  =  B )  ->  (  Hom  `  c
)  =  (  Hom  `  C ) )
12 ismon.h . . . . . . 7  |-  H  =  (  Hom  `  C
)
1311, 12syl6eqr 2438 . . . . . 6  |-  ( ( c  =  C  /\  b  =  B )  ->  (  Hom  `  c
)  =  H )
14 simplr 732 . . . . . . 7  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  b  =  B )
15 simpr 448 . . . . . . . . 9  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  h  =  H )
1615oveqd 6038 . . . . . . . 8  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (
x h y )  =  ( x H y ) )
1715oveqd 6038 . . . . . . . . . . . 12  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (
z h x )  =  ( z H x ) )
18 simpll 731 . . . . . . . . . . . . . . . 16  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  c  =  C )
1918fveq2d 5673 . . . . . . . . . . . . . . 15  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (comp `  c )  =  (comp `  C ) )
20 ismon.o . . . . . . . . . . . . . . 15  |-  .x.  =  (comp `  C )
2119, 20syl6eqr 2438 . . . . . . . . . . . . . 14  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (comp `  c )  =  .x.  )
2221oveqd 6038 . . . . . . . . . . . . 13  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  ( <. z ,  x >. (comp `  c ) y )  =  ( <. z ,  x >.  .x.  y ) )
2322oveqd 6038 . . . . . . . . . . . 12  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (
f ( <. z ,  x >. (comp `  c
) y ) g )  =  ( f ( <. z ,  x >.  .x.  y ) g ) )
2417, 23mpteq12dv 4229 . . . . . . . . . . 11  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (
g  e.  ( z h x )  |->  ( f ( <. z ,  x >. (comp `  c
) y ) g ) )  =  ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) )
2524cnveqd 4989 . . . . . . . . . 10  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  `' ( g  e.  ( z h x ) 
|->  ( f ( <.
z ,  x >. (comp `  c ) y ) g ) )  =  `' ( g  e.  ( z H x )  |->  ( f (
<. z ,  x >.  .x.  y ) g ) ) )
2625funeqd 5416 . . . . . . . . 9  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  ( Fun  `' ( g  e.  ( z h x )  |->  ( f (
<. z ,  x >. (comp `  c ) y ) g ) )  <->  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) ) )
2714, 26raleqbidv 2860 . . . . . . . 8  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  ( A. z  e.  b  Fun  `' ( g  e.  ( z h x )  |->  ( f (
<. z ,  x >. (comp `  c ) y ) g ) )  <->  A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) ) )
2816, 27rabeqbidv 2895 . . . . . . 7  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  { f  e.  ( x h y )  |  A. z  e.  b  Fun  `' ( g  e.  ( z h x ) 
|->  ( f ( <.
z ,  x >. (comp `  c ) y ) g ) ) }  =  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) } )
2914, 14, 28mpt2eq123dv 6076 . . . . . 6  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (
x  e.  b ,  y  e.  b  |->  { f  e.  ( x h y )  | 
A. z  e.  b  Fun  `' ( g  e.  ( z h x )  |->  ( f ( <. z ,  x >. (comp `  c )
y ) g ) ) } )  =  ( x  e.  B ,  y  e.  B  |->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) } ) )
309, 13, 29csbied2 3238 . . . . 5  |-  ( ( c  =  C  /\  b  =  B )  ->  [_ (  Hom  `  c
)  /  h ]_ ( x  e.  b ,  y  e.  b  |->  { f  e.  ( x h y )  |  A. z  e.  b  Fun  `' ( g  e.  ( z h x )  |->  ( f ( <. z ,  x >. (comp `  c
) y ) g ) ) } )  =  ( x  e.  B ,  y  e.  B  |->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) } ) )
314, 7, 30csbied2 3238 . . . 4  |-  ( c  =  C  ->  [_ ( Base `  c )  / 
b ]_ [_ (  Hom  `  c )  /  h ]_ ( x  e.  b ,  y  e.  b 
|->  { f  e.  ( x h y )  |  A. z  e.  b  Fun  `' ( g  e.  ( z h x )  |->  ( f ( <. z ,  x >. (comp `  c
) y ) g ) ) } )  =  ( x  e.  B ,  y  e.  B  |->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) } ) )
32 df-mon 13884 . . . 4  |- Mono  =  ( c  e.  Cat  |->  [_ ( Base `  c )  /  b ]_ [_ (  Hom  `  c )  /  h ]_ ( x  e.  b ,  y  e.  b  |->  { f  e.  ( x h y )  |  A. z  e.  b  Fun  `' ( g  e.  ( z h x )  |->  ( f ( <. z ,  x >. (comp `  c
) y ) g ) ) } ) )
33 fvex 5683 . . . . . 6  |-  ( Base `  C )  e.  _V
346, 33eqeltri 2458 . . . . 5  |-  B  e. 
_V
3534, 34mpt2ex 6365 . . . 4  |-  ( x  e.  B ,  y  e.  B  |->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x ) 
|->  ( f ( <.
z ,  x >.  .x.  y ) g ) ) } )  e. 
_V
3631, 32, 35fvmpt 5746 . . 3  |-  ( C  e.  Cat  ->  (Mono `  C )  =  ( x  e.  B , 
y  e.  B  |->  { f  e.  ( x H y )  | 
A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f (
<. z ,  x >.  .x.  y ) g ) ) } ) )
372, 36syl 16 . 2  |-  ( ph  ->  (Mono `  C )  =  ( x  e.  B ,  y  e.  B  |->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) } ) )
381, 37syl5eq 2432 1  |-  ( ph  ->  M  =  ( x  e.  B ,  y  e.  B  |->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x ) 
|->  ( f ( <.
z ,  x >.  .x.  y ) g ) ) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2650   {crab 2654   _Vcvv 2900   [_csb 3195   <.cop 3761    e. cmpt 4208   `'ccnv 4818   Fun wfun 5389   ` cfv 5395  (class class class)co 6021    e. cmpt2 6023   Basecbs 13397    Hom chom 13468  compcco 13469   Catccat 13817  Monocmon 13882
This theorem is referenced by:  ismon  13887  monpropd  13891
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-mon 13884
  Copyright terms: Public domain W3C validator