MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monhom Unicode version

Theorem monhom 13638
Description: A monomorphism is a morphism. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
ismon.b  |-  B  =  ( Base `  C
)
ismon.h  |-  H  =  (  Hom  `  C
)
ismon.o  |-  .x.  =  (comp `  C )
ismon.s  |-  M  =  (Mono `  C )
ismon.c  |-  ( ph  ->  C  e.  Cat )
ismon.x  |-  ( ph  ->  X  e.  B )
ismon.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
monhom  |-  ( ph  ->  ( X M Y )  C_  ( X H Y ) )

Proof of Theorem monhom
Dummy variables  f 
g  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismon.b . . . 4  |-  B  =  ( Base `  C
)
2 ismon.h . . . 4  |-  H  =  (  Hom  `  C
)
3 ismon.o . . . 4  |-  .x.  =  (comp `  C )
4 ismon.s . . . 4  |-  M  =  (Mono `  C )
5 ismon.c . . . 4  |-  ( ph  ->  C  e.  Cat )
6 ismon.x . . . 4  |-  ( ph  ->  X  e.  B )
7 ismon.y . . . 4  |-  ( ph  ->  Y  e.  B )
81, 2, 3, 4, 5, 6, 7ismon 13636 . . 3  |-  ( ph  ->  ( f  e.  ( X M Y )  <-> 
( f  e.  ( X H Y )  /\  A. z  e.  B  Fun  `' ( g  e.  ( z H X )  |->  ( f ( <. z ,  X >.  .x.  Y ) g ) ) ) ) )
9 simpl 443 . . 3  |-  ( ( f  e.  ( X H Y )  /\  A. z  e.  B  Fun  `' ( g  e.  ( z H X ) 
|->  ( f ( <.
z ,  X >.  .x. 
Y ) g ) ) )  ->  f  e.  ( X H Y ) )
108, 9syl6bi 219 . 2  |-  ( ph  ->  ( f  e.  ( X M Y )  ->  f  e.  ( X H Y ) ) )
1110ssrdv 3185 1  |-  ( ph  ->  ( X M Y )  C_  ( X H Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543    C_ wss 3152   <.cop 3643    e. cmpt 4077   `'ccnv 4688   Fun wfun 5249   ` cfv 5255  (class class class)co 5858   Basecbs 13148    Hom chom 13219  compcco 13220   Catccat 13566  Monocmon 13631
This theorem is referenced by:  setcmon  13919
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-mon 13633
  Copyright terms: Public domain W3C validator