MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monoord Structured version   Unicode version

Theorem monoord 11353
Description: Ordering relation for a monotonic sequence, increasing case. (Contributed by NM, 13-Mar-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
monoord.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
monoord.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  RR )
monoord.3  |-  ( (
ph  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  k )  <_  ( F `  ( k  +  1 ) ) )
Assertion
Ref Expression
monoord  |-  ( ph  ->  ( F `  M
)  <_  ( F `  N ) )
Distinct variable groups:    k, F    k, M    k, N    ph, k

Proof of Theorem monoord
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 monoord.1 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 11065 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 16 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 eleq1 2496 . . . . . 6  |-  ( x  =  M  ->  (
x  e.  ( M ... N )  <->  M  e.  ( M ... N ) ) )
5 fveq2 5728 . . . . . . 7  |-  ( x  =  M  ->  ( F `  x )  =  ( F `  M ) )
65breq2d 4224 . . . . . 6  |-  ( x  =  M  ->  (
( F `  M
)  <_  ( F `  x )  <->  ( F `  M )  <_  ( F `  M )
) )
74, 6imbi12d 312 . . . . 5  |-  ( x  =  M  ->  (
( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x )
)  <->  ( M  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  M )
) ) )
87imbi2d 308 . . . 4  |-  ( x  =  M  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x
) ) )  <->  ( ph  ->  ( M  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  M )
) ) ) )
9 eleq1 2496 . . . . . 6  |-  ( x  =  n  ->  (
x  e.  ( M ... N )  <->  n  e.  ( M ... N ) ) )
10 fveq2 5728 . . . . . . 7  |-  ( x  =  n  ->  ( F `  x )  =  ( F `  n ) )
1110breq2d 4224 . . . . . 6  |-  ( x  =  n  ->  (
( F `  M
)  <_  ( F `  x )  <->  ( F `  M )  <_  ( F `  n )
) )
129, 11imbi12d 312 . . . . 5  |-  ( x  =  n  ->  (
( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x )
)  <->  ( n  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  n )
) ) )
1312imbi2d 308 . . . 4  |-  ( x  =  n  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x
) ) )  <->  ( ph  ->  ( n  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  n )
) ) ) )
14 eleq1 2496 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
x  e.  ( M ... N )  <->  ( n  +  1 )  e.  ( M ... N
) ) )
15 fveq2 5728 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  ( F `  x )  =  ( F `  ( n  +  1
) ) )
1615breq2d 4224 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
( F `  M
)  <_  ( F `  x )  <->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) )
1714, 16imbi12d 312 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x )
)  <->  ( ( n  +  1 )  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) ) )
1817imbi2d 308 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x
) ) )  <->  ( ph  ->  ( ( n  + 
1 )  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) ) ) )
19 eleq1 2496 . . . . . 6  |-  ( x  =  N  ->  (
x  e.  ( M ... N )  <->  N  e.  ( M ... N ) ) )
20 fveq2 5728 . . . . . . 7  |-  ( x  =  N  ->  ( F `  x )  =  ( F `  N ) )
2120breq2d 4224 . . . . . 6  |-  ( x  =  N  ->  (
( F `  M
)  <_  ( F `  x )  <->  ( F `  M )  <_  ( F `  N )
) )
2219, 21imbi12d 312 . . . . 5  |-  ( x  =  N  ->  (
( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x )
)  <->  ( N  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  N )
) ) )
2322imbi2d 308 . . . 4  |-  ( x  =  N  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x
) ) )  <->  ( ph  ->  ( N  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  N )
) ) ) )
24 eluzfz1 11064 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
251, 24syl 16 . . . . . . . 8  |-  ( ph  ->  M  e.  ( M ... N ) )
26 monoord.2 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  RR )
2726ralrimiva 2789 . . . . . . . 8  |-  ( ph  ->  A. k  e.  ( M ... N ) ( F `  k
)  e.  RR )
28 fveq2 5728 . . . . . . . . . 10  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
2928eleq1d 2502 . . . . . . . . 9  |-  ( k  =  M  ->  (
( F `  k
)  e.  RR  <->  ( F `  M )  e.  RR ) )
3029rspcv 3048 . . . . . . . 8  |-  ( M  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) ( F `  k )  e.  RR  ->  ( F `  M )  e.  RR ) )
3125, 27, 30sylc 58 . . . . . . 7  |-  ( ph  ->  ( F `  M
)  e.  RR )
3231leidd 9593 . . . . . 6  |-  ( ph  ->  ( F `  M
)  <_  ( F `  M ) )
3332a1d 23 . . . . 5  |-  ( ph  ->  ( M  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  M )
) )
3433a1i 11 . . . 4  |-  ( M  e.  ZZ  ->  ( ph  ->  ( M  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  M )
) ) )
35 simprl 733 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ( ZZ>= `  M )
)
36 simprr 734 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( n  +  1 )  e.  ( M ... N
) )
37 peano2fzr 11069 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= `  M )  /\  (
n  +  1 )  e.  ( M ... N ) )  ->  n  e.  ( M ... N ) )
3835, 36, 37syl2anc 643 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ( M ... N ) )
3938expr 599 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  n  e.  ( M ... N
) ) )
4039imim1d 71 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( M ... N )  -> 
( F `  M
)  <_  ( F `  n ) )  -> 
( ( n  + 
1 )  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  n )
) ) )
41 eluzelz 10496 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
4235, 41syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ZZ )
43 elfzuz3 11056 . . . . . . . . . . . . . 14  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  ( n  +  1 ) ) )
4436, 43syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  N  e.  ( ZZ>= `  ( n  +  1 ) ) )
45 eluzp1m1 10509 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  N  e.  ( ZZ>= `  ( n  +  1
) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  n ) )
4642, 44, 45syl2anc 643 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  n )
)
47 elfzuzb 11053 . . . . . . . . . . . 12  |-  ( n  e.  ( M ... ( N  -  1
) )  <->  ( n  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  n ) ) )
4835, 46, 47sylanbrc 646 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ( M ... ( N  -  1 ) ) )
49 monoord.3 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  k )  <_  ( F `  ( k  +  1 ) ) )
5049ralrimiva 2789 . . . . . . . . . . . 12  |-  ( ph  ->  A. k  e.  ( M ... ( N  -  1 ) ) ( F `  k
)  <_  ( F `  ( k  +  1 ) ) )
5150adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  A. k  e.  ( M ... ( N  -  1 ) ) ( F `  k )  <_  ( F `  ( k  +  1 ) ) )
52 fveq2 5728 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
53 oveq1 6088 . . . . . . . . . . . . . 14  |-  ( k  =  n  ->  (
k  +  1 )  =  ( n  + 
1 ) )
5453fveq2d 5732 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  ( F `  ( k  +  1 ) )  =  ( F `  ( n  +  1
) ) )
5552, 54breq12d 4225 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
( F `  k
)  <_  ( F `  ( k  +  1 ) )  <->  ( F `  n )  <_  ( F `  ( n  +  1 ) ) ) )
5655rspcv 3048 . . . . . . . . . . 11  |-  ( n  e.  ( M ... ( N  -  1
) )  ->  ( A. k  e.  ( M ... ( N  - 
1 ) ) ( F `  k )  <_  ( F `  ( k  +  1 ) )  ->  ( F `  n )  <_  ( F `  (
n  +  1 ) ) ) )
5748, 51, 56sylc 58 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  n )  <_  ( F `  ( n  +  1 ) ) )
5831adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  M )  e.  RR )
5927adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  A. k  e.  ( M ... N
) ( F `  k )  e.  RR )
6052eleq1d 2502 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  (
( F `  k
)  e.  RR  <->  ( F `  n )  e.  RR ) )
6160rspcv 3048 . . . . . . . . . . . 12  |-  ( n  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) ( F `  k )  e.  RR  ->  ( F `  n )  e.  RR ) )
6238, 59, 61sylc 58 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  n )  e.  RR )
63 fveq2 5728 . . . . . . . . . . . . . 14  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
6463eleq1d 2502 . . . . . . . . . . . . 13  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  e.  RR  <->  ( F `  ( n  +  1 ) )  e.  RR ) )
6564rspcv 3048 . . . . . . . . . . . 12  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) ( F `  k )  e.  RR  ->  ( F `  ( n  +  1 ) )  e.  RR ) )
6636, 59, 65sylc 58 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  ( n  +  1 ) )  e.  RR )
67 letr 9167 . . . . . . . . . . 11  |-  ( ( ( F `  M
)  e.  RR  /\  ( F `  n )  e.  RR  /\  ( F `  ( n  +  1 ) )  e.  RR )  -> 
( ( ( F `
 M )  <_ 
( F `  n
)  /\  ( F `  n )  <_  ( F `  ( n  +  1 ) ) )  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) )
6858, 62, 66, 67syl3anc 1184 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (
( F `  M
)  <_  ( F `  n )  /\  ( F `  n )  <_  ( F `  (
n  +  1 ) ) )  ->  ( F `  M )  <_  ( F `  (
n  +  1 ) ) ) )
6957, 68mpan2d 656 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( ( F `  M )  <_  ( F `  n
)  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) )
7069expr 599 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  (
( F `  M
)  <_  ( F `  n )  ->  ( F `  M )  <_  ( F `  (
n  +  1 ) ) ) ) )
7170a2d 24 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
( n  +  1 )  e.  ( M ... N )  -> 
( F `  M
)  <_  ( F `  n ) )  -> 
( ( n  + 
1 )  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) ) )
7240, 71syld 42 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( M ... N )  -> 
( F `  M
)  <_  ( F `  n ) )  -> 
( ( n  + 
1 )  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) ) )
7372expcom 425 . . . . 5  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( ( n  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  n )
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  (
n  +  1 ) ) ) ) ) )
7473a2d 24 . . . 4  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  ( n  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  n )
) )  ->  ( ph  ->  ( ( n  +  1 )  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) ) ) )
758, 13, 18, 23, 34, 74uzind4 10534 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( N  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  N )
) ) )
761, 75mpcom 34 . 2  |-  ( ph  ->  ( N  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  N )
) )
773, 76mpd 15 1  |-  ( ph  ->  ( F `  M
)  <_  ( F `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705   class class class wbr 4212   ` cfv 5454  (class class class)co 6081   RRcr 8989   1c1 8991    + caddc 8993    <_ cle 9121    - cmin 9291   ZZcz 10282   ZZ>=cuz 10488   ...cfz 11043
This theorem is referenced by:  monoord2  11354  sermono  11355  climub  12455  isercolllem1  12458  climsup  12463  dvfsumlem3  19912  emcllem7  20840  lmdvg  24338
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-n0 10222  df-z 10283  df-uz 10489  df-fz 11044
  Copyright terms: Public domain W3C validator