Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  monotoddzz Structured version   Unicode version

Theorem monotoddzz 26997
Description: A function (given implicitly) which is odd and monotonic on  NN0 is monotonic on  ZZ. This proof is far too long. (Contributed by Stefan O'Rear, 25-Sep-2014.)
Hypotheses
Ref Expression
monotoddzz.1  |-  ( (
ph  /\  x  e.  NN0 
/\  y  e.  NN0 )  ->  ( x  < 
y  ->  E  <  F ) )
monotoddzz.2  |-  ( (
ph  /\  x  e.  ZZ )  ->  E  e.  RR )
monotoddzz.3  |-  ( (
ph  /\  y  e.  ZZ )  ->  G  = 
-u F )
monotoddzz.4  |-  ( x  =  A  ->  E  =  C )
monotoddzz.5  |-  ( x  =  B  ->  E  =  D )
monotoddzz.6  |-  ( x  =  y  ->  E  =  F )
monotoddzz.7  |-  ( x  =  -u y  ->  E  =  G )
Assertion
Ref Expression
monotoddzz  |-  ( (
ph  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  < 
B  <->  C  <  D ) )
Distinct variable groups:    ph, x, y   
x, A, y    x, B, y    y, E    x, C, y    x, D, y   
x, F    x, G
Allowed substitution hints:    E( x)    F( y)    G( y)

Proof of Theorem monotoddzz
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1629 . . . . 5  |-  F/ x
( ph  /\  a  e.  ZZ )
2 nffvmpt1 5728 . . . . . 6  |-  F/_ x
( ( x  e.  ZZ  |->  E ) `  a )
32nfel1 2581 . . . . 5  |-  F/ x
( ( x  e.  ZZ  |->  E ) `  a )  e.  RR
41, 3nfim 1832 . . . 4  |-  F/ x
( ( ph  /\  a  e.  ZZ )  ->  ( ( x  e.  ZZ  |->  E ) `  a )  e.  RR )
5 eleq1 2495 . . . . . 6  |-  ( x  =  a  ->  (
x  e.  ZZ  <->  a  e.  ZZ ) )
65anbi2d 685 . . . . 5  |-  ( x  =  a  ->  (
( ph  /\  x  e.  ZZ )  <->  ( ph  /\  a  e.  ZZ ) ) )
7 fveq2 5720 . . . . . 6  |-  ( x  =  a  ->  (
( x  e.  ZZ  |->  E ) `  x
)  =  ( ( x  e.  ZZ  |->  E ) `  a ) )
87eleq1d 2501 . . . . 5  |-  ( x  =  a  ->  (
( ( x  e.  ZZ  |->  E ) `  x )  e.  RR  <->  ( ( x  e.  ZZ  |->  E ) `  a
)  e.  RR ) )
96, 8imbi12d 312 . . . 4  |-  ( x  =  a  ->  (
( ( ph  /\  x  e.  ZZ )  ->  ( ( x  e.  ZZ  |->  E ) `  x )  e.  RR ) 
<->  ( ( ph  /\  a  e.  ZZ )  ->  ( ( x  e.  ZZ  |->  E ) `  a )  e.  RR ) ) )
10 simpr 448 . . . . . 6  |-  ( (
ph  /\  x  e.  ZZ )  ->  x  e.  ZZ )
11 monotoddzz.2 . . . . . 6  |-  ( (
ph  /\  x  e.  ZZ )  ->  E  e.  RR )
12 eqid 2435 . . . . . . 7  |-  ( x  e.  ZZ  |->  E )  =  ( x  e.  ZZ  |->  E )
1312fvmpt2 5804 . . . . . 6  |-  ( ( x  e.  ZZ  /\  E  e.  RR )  ->  ( ( x  e.  ZZ  |->  E ) `  x )  =  E )
1410, 11, 13syl2anc 643 . . . . 5  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( ( x  e.  ZZ  |->  E ) `  x )  =  E )
1514, 11eqeltrd 2509 . . . 4  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( ( x  e.  ZZ  |->  E ) `  x )  e.  RR )
164, 9, 15chvar 1968 . . 3  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( ( x  e.  ZZ  |->  E ) `  a )  e.  RR )
17 eleq1 2495 . . . . . 6  |-  ( y  =  a  ->  (
y  e.  ZZ  <->  a  e.  ZZ ) )
1817anbi2d 685 . . . . 5  |-  ( y  =  a  ->  (
( ph  /\  y  e.  ZZ )  <->  ( ph  /\  a  e.  ZZ ) ) )
19 negeq 9290 . . . . . . 7  |-  ( y  =  a  ->  -u y  =  -u a )
2019fveq2d 5724 . . . . . 6  |-  ( y  =  a  ->  (
( x  e.  ZZ  |->  E ) `  -u y
)  =  ( ( x  e.  ZZ  |->  E ) `  -u a
) )
21 fveq2 5720 . . . . . . 7  |-  ( y  =  a  ->  (
( x  e.  ZZ  |->  E ) `  y
)  =  ( ( x  e.  ZZ  |->  E ) `  a ) )
2221negeqd 9292 . . . . . 6  |-  ( y  =  a  ->  -u (
( x  e.  ZZ  |->  E ) `  y
)  =  -u (
( x  e.  ZZ  |->  E ) `  a
) )
2320, 22eqeq12d 2449 . . . . 5  |-  ( y  =  a  ->  (
( ( x  e.  ZZ  |->  E ) `  -u y )  =  -u ( ( x  e.  ZZ  |->  E ) `  y )  <->  ( (
x  e.  ZZ  |->  E ) `  -u a
)  =  -u (
( x  e.  ZZ  |->  E ) `  a
) ) )
2418, 23imbi12d 312 . . . 4  |-  ( y  =  a  ->  (
( ( ph  /\  y  e.  ZZ )  ->  ( ( x  e.  ZZ  |->  E ) `  -u y )  =  -u ( ( x  e.  ZZ  |->  E ) `  y ) )  <->  ( ( ph  /\  a  e.  ZZ )  ->  ( ( x  e.  ZZ  |->  E ) `
 -u a )  = 
-u ( ( x  e.  ZZ  |->  E ) `
 a ) ) ) )
25 monotoddzz.3 . . . . 5  |-  ( (
ph  /\  y  e.  ZZ )  ->  G  = 
-u F )
26 znegcl 10305 . . . . . . 7  |-  ( y  e.  ZZ  ->  -u y  e.  ZZ )
2726adantl 453 . . . . . 6  |-  ( (
ph  /\  y  e.  ZZ )  ->  -u y  e.  ZZ )
28 negex 9296 . . . . . . . 8  |-  -u y  e.  _V
29 eleq1 2495 . . . . . . . . . 10  |-  ( x  =  -u y  ->  (
x  e.  ZZ  <->  -u y  e.  ZZ ) )
3029anbi2d 685 . . . . . . . . 9  |-  ( x  =  -u y  ->  (
( ph  /\  x  e.  ZZ )  <->  ( ph  /\  -u y  e.  ZZ ) ) )
31 monotoddzz.7 . . . . . . . . . 10  |-  ( x  =  -u y  ->  E  =  G )
3231eleq1d 2501 . . . . . . . . 9  |-  ( x  =  -u y  ->  ( E  e.  RR  <->  G  e.  RR ) )
3330, 32imbi12d 312 . . . . . . . 8  |-  ( x  =  -u y  ->  (
( ( ph  /\  x  e.  ZZ )  ->  E  e.  RR )  <-> 
( ( ph  /\  -u y  e.  ZZ )  ->  G  e.  RR ) ) )
3428, 33, 11vtocl 2998 . . . . . . 7  |-  ( (
ph  /\  -u y  e.  ZZ )  ->  G  e.  RR )
3526, 34sylan2 461 . . . . . 6  |-  ( (
ph  /\  y  e.  ZZ )  ->  G  e.  RR )
3631, 12fvmptg 5796 . . . . . 6  |-  ( (
-u y  e.  ZZ  /\  G  e.  RR )  ->  ( ( x  e.  ZZ  |->  E ) `
 -u y )  =  G )
3727, 35, 36syl2anc 643 . . . . 5  |-  ( (
ph  /\  y  e.  ZZ )  ->  ( ( x  e.  ZZ  |->  E ) `  -u y
)  =  G )
38 simpr 448 . . . . . . 7  |-  ( (
ph  /\  y  e.  ZZ )  ->  y  e.  ZZ )
39 eleq1 2495 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  e.  ZZ  <->  y  e.  ZZ ) )
4039anbi2d 685 . . . . . . . . 9  |-  ( x  =  y  ->  (
( ph  /\  x  e.  ZZ )  <->  ( ph  /\  y  e.  ZZ ) ) )
41 monotoddzz.6 . . . . . . . . . 10  |-  ( x  =  y  ->  E  =  F )
4241eleq1d 2501 . . . . . . . . 9  |-  ( x  =  y  ->  ( E  e.  RR  <->  F  e.  RR ) )
4340, 42imbi12d 312 . . . . . . . 8  |-  ( x  =  y  ->  (
( ( ph  /\  x  e.  ZZ )  ->  E  e.  RR )  <-> 
( ( ph  /\  y  e.  ZZ )  ->  F  e.  RR ) ) )
4443, 11chvarv 1969 . . . . . . 7  |-  ( (
ph  /\  y  e.  ZZ )  ->  F  e.  RR )
4541, 12fvmptg 5796 . . . . . . 7  |-  ( ( y  e.  ZZ  /\  F  e.  RR )  ->  ( ( x  e.  ZZ  |->  E ) `  y )  =  F )
4638, 44, 45syl2anc 643 . . . . . 6  |-  ( (
ph  /\  y  e.  ZZ )  ->  ( ( x  e.  ZZ  |->  E ) `  y )  =  F )
4746negeqd 9292 . . . . 5  |-  ( (
ph  /\  y  e.  ZZ )  ->  -u (
( x  e.  ZZ  |->  E ) `  y
)  =  -u F
)
4825, 37, 473eqtr4d 2477 . . . 4  |-  ( (
ph  /\  y  e.  ZZ )  ->  ( ( x  e.  ZZ  |->  E ) `  -u y
)  =  -u (
( x  e.  ZZ  |->  E ) `  y
) )
4924, 48chvarv 1969 . . 3  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( ( x  e.  ZZ  |->  E ) `  -u a
)  =  -u (
( x  e.  ZZ  |->  E ) `  a
) )
50 nfv 1629 . . . . 5  |-  F/ x
( ph  /\  a  e.  NN0  /\  b  e. 
NN0 )
51 nfv 1629 . . . . . 6  |-  F/ x  a  <  b
52 nfcv 2571 . . . . . . 7  |-  F/_ x  <
53 nffvmpt1 5728 . . . . . . 7  |-  F/_ x
( ( x  e.  ZZ  |->  E ) `  b )
542, 52, 53nfbr 4248 . . . . . 6  |-  F/ x
( ( x  e.  ZZ  |->  E ) `  a )  <  (
( x  e.  ZZ  |->  E ) `  b
)
5551, 54nfim 1832 . . . . 5  |-  F/ x
( a  <  b  ->  ( ( x  e.  ZZ  |->  E ) `  a )  <  (
( x  e.  ZZ  |->  E ) `  b
) )
5650, 55nfim 1832 . . . 4  |-  F/ x
( ( ph  /\  a  e.  NN0  /\  b  e.  NN0 )  ->  (
a  <  b  ->  ( ( x  e.  ZZ  |->  E ) `  a
)  <  ( (
x  e.  ZZ  |->  E ) `  b ) ) )
57 eleq1 2495 . . . . . 6  |-  ( x  =  a  ->  (
x  e.  NN0  <->  a  e.  NN0 ) )
58573anbi2d 1259 . . . . 5  |-  ( x  =  a  ->  (
( ph  /\  x  e.  NN0  /\  b  e. 
NN0 )  <->  ( ph  /\  a  e.  NN0  /\  b  e.  NN0 ) ) )
59 breq1 4207 . . . . . 6  |-  ( x  =  a  ->  (
x  <  b  <->  a  <  b ) )
607breq1d 4214 . . . . . 6  |-  ( x  =  a  ->  (
( ( x  e.  ZZ  |->  E ) `  x )  <  (
( x  e.  ZZ  |->  E ) `  b
)  <->  ( ( x  e.  ZZ  |->  E ) `
 a )  < 
( ( x  e.  ZZ  |->  E ) `  b ) ) )
6159, 60imbi12d 312 . . . . 5  |-  ( x  =  a  ->  (
( x  <  b  ->  ( ( x  e.  ZZ  |->  E ) `  x )  <  (
( x  e.  ZZ  |->  E ) `  b
) )  <->  ( a  <  b  ->  ( (
x  e.  ZZ  |->  E ) `  a )  <  ( ( x  e.  ZZ  |->  E ) `
 b ) ) ) )
6258, 61imbi12d 312 . . . 4  |-  ( x  =  a  ->  (
( ( ph  /\  x  e.  NN0  /\  b  e.  NN0 )  ->  (
x  <  b  ->  ( ( x  e.  ZZ  |->  E ) `  x
)  <  ( (
x  e.  ZZ  |->  E ) `  b ) ) )  <->  ( ( ph  /\  a  e.  NN0  /\  b  e.  NN0 )  ->  ( a  <  b  ->  ( ( x  e.  ZZ  |->  E ) `  a )  <  (
( x  e.  ZZ  |->  E ) `  b
) ) ) ) )
63 eleq1 2495 . . . . . . 7  |-  ( y  =  b  ->  (
y  e.  NN0  <->  b  e.  NN0 ) )
64633anbi3d 1260 . . . . . 6  |-  ( y  =  b  ->  (
( ph  /\  x  e.  NN0  /\  y  e. 
NN0 )  <->  ( ph  /\  x  e.  NN0  /\  b  e.  NN0 ) ) )
65 breq2 4208 . . . . . . 7  |-  ( y  =  b  ->  (
x  <  y  <->  x  <  b ) )
66 fveq2 5720 . . . . . . . 8  |-  ( y  =  b  ->  (
( x  e.  ZZ  |->  E ) `  y
)  =  ( ( x  e.  ZZ  |->  E ) `  b ) )
6766breq2d 4216 . . . . . . 7  |-  ( y  =  b  ->  (
( ( x  e.  ZZ  |->  E ) `  x )  <  (
( x  e.  ZZ  |->  E ) `  y
)  <->  ( ( x  e.  ZZ  |->  E ) `
 x )  < 
( ( x  e.  ZZ  |->  E ) `  b ) ) )
6865, 67imbi12d 312 . . . . . 6  |-  ( y  =  b  ->  (
( x  <  y  ->  ( ( x  e.  ZZ  |->  E ) `  x )  <  (
( x  e.  ZZ  |->  E ) `  y
) )  <->  ( x  <  b  ->  ( (
x  e.  ZZ  |->  E ) `  x )  <  ( ( x  e.  ZZ  |->  E ) `
 b ) ) ) )
6964, 68imbi12d 312 . . . . 5  |-  ( y  =  b  ->  (
( ( ph  /\  x  e.  NN0  /\  y  e.  NN0 )  ->  (
x  <  y  ->  ( ( x  e.  ZZ  |->  E ) `  x
)  <  ( (
x  e.  ZZ  |->  E ) `  y ) ) )  <->  ( ( ph  /\  x  e.  NN0  /\  b  e.  NN0 )  ->  ( x  <  b  ->  ( ( x  e.  ZZ  |->  E ) `  x )  <  (
( x  e.  ZZ  |->  E ) `  b
) ) ) ) )
70 monotoddzz.1 . . . . . 6  |-  ( (
ph  /\  x  e.  NN0 
/\  y  e.  NN0 )  ->  ( x  < 
y  ->  E  <  F ) )
71 nn0z 10296 . . . . . . . . 9  |-  ( x  e.  NN0  ->  x  e.  ZZ )
7271, 14sylan2 461 . . . . . . . 8  |-  ( (
ph  /\  x  e.  NN0 )  ->  ( (
x  e.  ZZ  |->  E ) `  x )  =  E )
73723adant3 977 . . . . . . 7  |-  ( (
ph  /\  x  e.  NN0 
/\  y  e.  NN0 )  ->  ( ( x  e.  ZZ  |->  E ) `
 x )  =  E )
74 nfv 1629 . . . . . . . . . 10  |-  F/ x
( ph  /\  y  e.  NN0 )
75 nffvmpt1 5728 . . . . . . . . . . 11  |-  F/_ x
( ( x  e.  ZZ  |->  E ) `  y )
7675nfeq1 2580 . . . . . . . . . 10  |-  F/ x
( ( x  e.  ZZ  |->  E ) `  y )  =  F
7774, 76nfim 1832 . . . . . . . . 9  |-  F/ x
( ( ph  /\  y  e.  NN0 )  -> 
( ( x  e.  ZZ  |->  E ) `  y )  =  F )
78 eleq1 2495 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
x  e.  NN0  <->  y  e.  NN0 ) )
7978anbi2d 685 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( ph  /\  x  e.  NN0 )  <->  ( ph  /\  y  e.  NN0 )
) )
80 fveq2 5720 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( x  e.  ZZ  |->  E ) `  x
)  =  ( ( x  e.  ZZ  |->  E ) `  y ) )
8180, 41eqeq12d 2449 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( ( x  e.  ZZ  |->  E ) `  x )  =  E  <-> 
( ( x  e.  ZZ  |->  E ) `  y )  =  F ) )
8279, 81imbi12d 312 . . . . . . . . 9  |-  ( x  =  y  ->  (
( ( ph  /\  x  e.  NN0 )  -> 
( ( x  e.  ZZ  |->  E ) `  x )  =  E )  <->  ( ( ph  /\  y  e.  NN0 )  ->  ( ( x  e.  ZZ  |->  E ) `  y )  =  F ) ) )
8377, 82, 72chvar 1968 . . . . . . . 8  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
x  e.  ZZ  |->  E ) `  y )  =  F )
84833adant2 976 . . . . . . 7  |-  ( (
ph  /\  x  e.  NN0 
/\  y  e.  NN0 )  ->  ( ( x  e.  ZZ  |->  E ) `
 y )  =  F )
8573, 84breq12d 4217 . . . . . 6  |-  ( (
ph  /\  x  e.  NN0 
/\  y  e.  NN0 )  ->  ( ( ( x  e.  ZZ  |->  E ) `  x )  <  ( ( x  e.  ZZ  |->  E ) `
 y )  <->  E  <  F ) )
8670, 85sylibrd 226 . . . . 5  |-  ( (
ph  /\  x  e.  NN0 
/\  y  e.  NN0 )  ->  ( x  < 
y  ->  ( (
x  e.  ZZ  |->  E ) `  x )  <  ( ( x  e.  ZZ  |->  E ) `
 y ) ) )
8769, 86chvarv 1969 . . . 4  |-  ( (
ph  /\  x  e.  NN0 
/\  b  e.  NN0 )  ->  ( x  < 
b  ->  ( (
x  e.  ZZ  |->  E ) `  x )  <  ( ( x  e.  ZZ  |->  E ) `
 b ) ) )
8856, 62, 87chvar 1968 . . 3  |-  ( (
ph  /\  a  e.  NN0 
/\  b  e.  NN0 )  ->  ( a  < 
b  ->  ( (
x  e.  ZZ  |->  E ) `  a )  <  ( ( x  e.  ZZ  |->  E ) `
 b ) ) )
8916, 49, 88monotoddzzfi 26996 . 2  |-  ( (
ph  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  < 
B  <->  ( ( x  e.  ZZ  |->  E ) `
 A )  < 
( ( x  e.  ZZ  |->  E ) `  B ) ) )
90 simp2 958 . . . 4  |-  ( (
ph  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  ZZ )
91 eleq1 2495 . . . . . . . . 9  |-  ( x  =  A  ->  (
x  e.  ZZ  <->  A  e.  ZZ ) )
9291anbi2d 685 . . . . . . . 8  |-  ( x  =  A  ->  (
( ph  /\  x  e.  ZZ )  <->  ( ph  /\  A  e.  ZZ ) ) )
93 monotoddzz.4 . . . . . . . . 9  |-  ( x  =  A  ->  E  =  C )
9493eleq1d 2501 . . . . . . . 8  |-  ( x  =  A  ->  ( E  e.  RR  <->  C  e.  RR ) )
9592, 94imbi12d 312 . . . . . . 7  |-  ( x  =  A  ->  (
( ( ph  /\  x  e.  ZZ )  ->  E  e.  RR )  <-> 
( ( ph  /\  A  e.  ZZ )  ->  C  e.  RR ) ) )
9695, 11vtoclg 3003 . . . . . 6  |-  ( A  e.  ZZ  ->  (
( ph  /\  A  e.  ZZ )  ->  C  e.  RR ) )
9796anabsi7 793 . . . . 5  |-  ( (
ph  /\  A  e.  ZZ )  ->  C  e.  RR )
98973adant3 977 . . . 4  |-  ( (
ph  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  C  e.  RR )
9993, 12fvmptg 5796 . . . 4  |-  ( ( A  e.  ZZ  /\  C  e.  RR )  ->  ( ( x  e.  ZZ  |->  E ) `  A )  =  C )
10090, 98, 99syl2anc 643 . . 3  |-  ( (
ph  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( x  e.  ZZ  |->  E ) `
 A )  =  C )
101 simp3 959 . . . 4  |-  ( (
ph  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  B  e.  ZZ )
102 eleq1 2495 . . . . . . . . 9  |-  ( x  =  B  ->  (
x  e.  ZZ  <->  B  e.  ZZ ) )
103102anbi2d 685 . . . . . . . 8  |-  ( x  =  B  ->  (
( ph  /\  x  e.  ZZ )  <->  ( ph  /\  B  e.  ZZ ) ) )
104 monotoddzz.5 . . . . . . . . 9  |-  ( x  =  B  ->  E  =  D )
105104eleq1d 2501 . . . . . . . 8  |-  ( x  =  B  ->  ( E  e.  RR  <->  D  e.  RR ) )
106103, 105imbi12d 312 . . . . . . 7  |-  ( x  =  B  ->  (
( ( ph  /\  x  e.  ZZ )  ->  E  e.  RR )  <-> 
( ( ph  /\  B  e.  ZZ )  ->  D  e.  RR ) ) )
107106, 11vtoclg 3003 . . . . . 6  |-  ( B  e.  ZZ  ->  (
( ph  /\  B  e.  ZZ )  ->  D  e.  RR ) )
108107anabsi7 793 . . . . 5  |-  ( (
ph  /\  B  e.  ZZ )  ->  D  e.  RR )
1091083adant2 976 . . . 4  |-  ( (
ph  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  D  e.  RR )
110104, 12fvmptg 5796 . . . 4  |-  ( ( B  e.  ZZ  /\  D  e.  RR )  ->  ( ( x  e.  ZZ  |->  E ) `  B )  =  D )
111101, 109, 110syl2anc 643 . . 3  |-  ( (
ph  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( x  e.  ZZ  |->  E ) `
 B )  =  D )
112100, 111breq12d 4217 . 2  |-  ( (
ph  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( x  e.  ZZ  |->  E ) `  A )  <  ( ( x  e.  ZZ  |->  E ) `
 B )  <->  C  <  D ) )
11389, 112bitrd 245 1  |-  ( (
ph  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  < 
B  <->  C  <  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   class class class wbr 4204    e. cmpt 4258   ` cfv 5446   RRcr 8981    < clt 9112   -ucneg 9284   NN0cn0 10213   ZZcz 10274
This theorem is referenced by:  ltrmy  27008
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-n0 10214  df-z 10275
  Copyright terms: Public domain W3C validator