Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  monotoddzzfi Structured version   Unicode version

Theorem monotoddzzfi 27006
Description: A function which is odd and monotonic on  NN0 is monotonic on  ZZ. This proof is far too long. (Contributed by Stefan O'Rear, 25-Sep-2014.)
Hypotheses
Ref Expression
monotoddzzfi.1  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( F `
 x )  e.  RR )
monotoddzzfi.2  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( F `
 -u x )  = 
-u ( F `  x ) )
monotoddzzfi.3  |-  ( (
ph  /\  x  e.  NN0 
/\  y  e.  NN0 )  ->  ( x  < 
y  ->  ( F `  x )  <  ( F `  y )
) )
Assertion
Ref Expression
monotoddzzfi  |-  ( (
ph  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  < 
B  <->  ( F `  A )  <  ( F `  B )
) )
Distinct variable groups:    ph, x, y   
x, A, y    x, B, y    x, F, y

Proof of Theorem monotoddzzfi
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5729 . . 3  |-  ( a  =  b  ->  ( F `  a )  =  ( F `  b ) )
2 fveq2 5729 . . 3  |-  ( a  =  A  ->  ( F `  a )  =  ( F `  A ) )
3 fveq2 5729 . . 3  |-  ( a  =  B  ->  ( F `  a )  =  ( F `  B ) )
4 zssre 10290 . . 3  |-  ZZ  C_  RR
5 eleq1 2497 . . . . . 6  |-  ( x  =  a  ->  (
x  e.  ZZ  <->  a  e.  ZZ ) )
65anbi2d 686 . . . . 5  |-  ( x  =  a  ->  (
( ph  /\  x  e.  ZZ )  <->  ( ph  /\  a  e.  ZZ ) ) )
7 fveq2 5729 . . . . . 6  |-  ( x  =  a  ->  ( F `  x )  =  ( F `  a ) )
87eleq1d 2503 . . . . 5  |-  ( x  =  a  ->  (
( F `  x
)  e.  RR  <->  ( F `  a )  e.  RR ) )
96, 8imbi12d 313 . . . 4  |-  ( x  =  a  ->  (
( ( ph  /\  x  e.  ZZ )  ->  ( F `  x
)  e.  RR )  <-> 
( ( ph  /\  a  e.  ZZ )  ->  ( F `  a
)  e.  RR ) ) )
10 monotoddzzfi.1 . . . 4  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( F `
 x )  e.  RR )
119, 10chvarv 1970 . . 3  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( F `
 a )  e.  RR )
12 elznn 10298 . . . . . . 7  |-  ( a  e.  ZZ  <->  ( a  e.  RR  /\  ( a  e.  NN  \/  -u a  e.  NN0 ) ) )
1312simprbi 452 . . . . . 6  |-  ( a  e.  ZZ  ->  (
a  e.  NN  \/  -u a  e.  NN0 )
)
14 elznn 10298 . . . . . . 7  |-  ( b  e.  ZZ  <->  ( b  e.  RR  /\  ( b  e.  NN  \/  -u b  e.  NN0 ) ) )
1514simprbi 452 . . . . . 6  |-  ( b  e.  ZZ  ->  (
b  e.  NN  \/  -u b  e.  NN0 )
)
1613, 15anim12i 551 . . . . 5  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( a  e.  NN  \/  -u a  e.  NN0 )  /\  (
b  e.  NN  \/  -u b  e.  NN0 )
) )
1716adantl 454 . . . 4  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( a  e.  NN  \/  -u a  e.  NN0 )  /\  (
b  e.  NN  \/  -u b  e.  NN0 )
) )
18 simpll 732 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  b  e.  NN ) )  ->  ph )
19 nnnn0 10229 . . . . . . . 8  |-  ( a  e.  NN  ->  a  e.  NN0 )
2019ad2antrl 710 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  b  e.  NN ) )  -> 
a  e.  NN0 )
21 nnnn0 10229 . . . . . . . 8  |-  ( b  e.  NN  ->  b  e.  NN0 )
2221ad2antll 711 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  b  e.  NN ) )  -> 
b  e.  NN0 )
23 vex 2960 . . . . . . . 8  |-  a  e. 
_V
24 vex 2960 . . . . . . . 8  |-  b  e. 
_V
25 simpl 445 . . . . . . . . . . 11  |-  ( ( x  =  a  /\  y  =  b )  ->  x  =  a )
2625eleq1d 2503 . . . . . . . . . 10  |-  ( ( x  =  a  /\  y  =  b )  ->  ( x  e.  NN0  <->  a  e.  NN0 ) )
27 simpr 449 . . . . . . . . . . 11  |-  ( ( x  =  a  /\  y  =  b )  ->  y  =  b )
2827eleq1d 2503 . . . . . . . . . 10  |-  ( ( x  =  a  /\  y  =  b )  ->  ( y  e.  NN0  <->  b  e.  NN0 ) )
2926, 283anbi23d 1258 . . . . . . . . 9  |-  ( ( x  =  a  /\  y  =  b )  ->  ( ( ph  /\  x  e.  NN0  /\  y  e.  NN0 )  <->  ( ph  /\  a  e.  NN0  /\  b  e.  NN0 ) ) )
30 breq12 4218 . . . . . . . . . 10  |-  ( ( x  =  a  /\  y  =  b )  ->  ( x  <  y  <->  a  <  b ) )
31 fveq2 5729 . . . . . . . . . . 11  |-  ( y  =  b  ->  ( F `  y )  =  ( F `  b ) )
327, 31breqan12d 4228 . . . . . . . . . 10  |-  ( ( x  =  a  /\  y  =  b )  ->  ( ( F `  x )  <  ( F `  y )  <->  ( F `  a )  <  ( F `  b ) ) )
3330, 32imbi12d 313 . . . . . . . . 9  |-  ( ( x  =  a  /\  y  =  b )  ->  ( ( x  < 
y  ->  ( F `  x )  <  ( F `  y )
)  <->  ( a  < 
b  ->  ( F `  a )  <  ( F `  b )
) ) )
3429, 33imbi12d 313 . . . . . . . 8  |-  ( ( x  =  a  /\  y  =  b )  ->  ( ( ( ph  /\  x  e.  NN0  /\  y  e.  NN0 )  -> 
( x  <  y  ->  ( F `  x
)  <  ( F `  y ) ) )  <-> 
( ( ph  /\  a  e.  NN0  /\  b  e.  NN0 )  ->  (
a  <  b  ->  ( F `  a )  <  ( F `  b ) ) ) ) )
35 monotoddzzfi.3 . . . . . . . 8  |-  ( (
ph  /\  x  e.  NN0 
/\  y  e.  NN0 )  ->  ( x  < 
y  ->  ( F `  x )  <  ( F `  y )
) )
3623, 24, 34, 35vtocl2 3008 . . . . . . 7  |-  ( (
ph  /\  a  e.  NN0 
/\  b  e.  NN0 )  ->  ( a  < 
b  ->  ( F `  a )  <  ( F `  b )
) )
3718, 20, 22, 36syl3anc 1185 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  b  e.  NN ) )  -> 
( a  <  b  ->  ( F `  a
)  <  ( F `  b ) ) )
3837ex 425 . . . . 5  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( a  e.  NN  /\  b  e.  NN )  ->  (
a  <  b  ->  ( F `  a )  <  ( F `  b ) ) ) )
3911adantrr 699 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( F `  a
)  e.  RR )
4039adantr 453 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
( F `  a
)  e.  RR )
41 0re 9092 . . . . . . . . 9  |-  0  e.  RR
4241a1i 11 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
0  e.  RR )
43 eleq1 2497 . . . . . . . . . . . . 13  |-  ( x  =  b  ->  (
x  e.  ZZ  <->  b  e.  ZZ ) )
4443anbi2d 686 . . . . . . . . . . . 12  |-  ( x  =  b  ->  (
( ph  /\  x  e.  ZZ )  <->  ( ph  /\  b  e.  ZZ ) ) )
45 fveq2 5729 . . . . . . . . . . . . 13  |-  ( x  =  b  ->  ( F `  x )  =  ( F `  b ) )
4645eleq1d 2503 . . . . . . . . . . . 12  |-  ( x  =  b  ->  (
( F `  x
)  e.  RR  <->  ( F `  b )  e.  RR ) )
4744, 46imbi12d 313 . . . . . . . . . . 11  |-  ( x  =  b  ->  (
( ( ph  /\  x  e.  ZZ )  ->  ( F `  x
)  e.  RR )  <-> 
( ( ph  /\  b  e.  ZZ )  ->  ( F `  b
)  e.  RR ) ) )
4847, 10chvarv 1970 . . . . . . . . . 10  |-  ( (
ph  /\  b  e.  ZZ )  ->  ( F `
 b )  e.  RR )
4948adantrl 698 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( F `  b
)  e.  RR )
5049adantr 453 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
( F `  b
)  e.  RR )
5141a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  e.  NN )  ->  0  e.  RR )
52 znegcl 10314 . . . . . . . . . . . . . . 15  |-  ( a  e.  ZZ  ->  -u a  e.  ZZ )
5352ad2antrl 710 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  -u a  e.  ZZ )
54 negex 9305 . . . . . . . . . . . . . . 15  |-  -u a  e.  _V
55 eleq1 2497 . . . . . . . . . . . . . . . . 17  |-  ( x  =  -u a  ->  (
x  e.  ZZ  <->  -u a  e.  ZZ ) )
5655anbi2d 686 . . . . . . . . . . . . . . . 16  |-  ( x  =  -u a  ->  (
( ph  /\  x  e.  ZZ )  <->  ( ph  /\  -u a  e.  ZZ ) ) )
57 fveq2 5729 . . . . . . . . . . . . . . . . 17  |-  ( x  =  -u a  ->  ( F `  x )  =  ( F `  -u a ) )
5857eleq1d 2503 . . . . . . . . . . . . . . . 16  |-  ( x  =  -u a  ->  (
( F `  x
)  e.  RR  <->  ( F `  -u a )  e.  RR ) )
5956, 58imbi12d 313 . . . . . . . . . . . . . . 15  |-  ( x  =  -u a  ->  (
( ( ph  /\  x  e.  ZZ )  ->  ( F `  x
)  e.  RR )  <-> 
( ( ph  /\  -u a  e.  ZZ )  ->  ( F `  -u a )  e.  RR ) ) )
6054, 59, 10vtocl 3007 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  -u a  e.  ZZ )  ->  ( F `  -u a )  e.  RR )
6153, 60syldan 458 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( F `  -u a
)  e.  RR )
6261ad2antrr 708 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  e.  NN )  ->  ( F `  -u a )  e.  RR )
63 0z 10294 . . . . . . . . . . . . . . . . . 18  |-  0  e.  ZZ
64 c0ex 9086 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  _V
65 eleq1 2497 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  0  ->  (
x  e.  ZZ  <->  0  e.  ZZ ) )
6665anbi2d 686 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  0  ->  (
( ph  /\  x  e.  ZZ )  <->  ( ph  /\  0  e.  ZZ ) ) )
67 fveq2 5729 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  0  ->  ( F `  x )  =  ( F ` 
0 ) )
6867eleq1d 2503 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  0  ->  (
( F `  x
)  e.  RR  <->  ( F `  0 )  e.  RR ) )
6966, 68imbi12d 313 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  0  ->  (
( ( ph  /\  x  e.  ZZ )  ->  ( F `  x
)  e.  RR )  <-> 
( ( ph  /\  0  e.  ZZ )  ->  ( F `  0
)  e.  RR ) ) )
7064, 69, 10vtocl 3007 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  0  e.  ZZ )  ->  ( F `
 0 )  e.  RR )
7163, 70mpan2 654 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( F `  0
)  e.  RR )
7271recnd 9115 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( F `  0
)  e.  CC )
73 neg0 9348 . . . . . . . . . . . . . . . . . 18  |-  -u 0  =  0
7473fveq2i 5732 . . . . . . . . . . . . . . . . 17  |-  ( F `
 -u 0 )  =  ( F `  0
)
75 negeq 9299 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  0  ->  -u x  =  -u 0 )
7675fveq2d 5733 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  0  ->  ( F `  -u x )  =  ( F `  -u 0 ) )
7767negeqd 9301 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  0  ->  -u ( F `  x )  =  -u ( F ` 
0 ) )
7876, 77eqeq12d 2451 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  0  ->  (
( F `  -u x
)  =  -u ( F `  x )  <->  ( F `  -u 0
)  =  -u ( F `  0 )
) )
7966, 78imbi12d 313 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  0  ->  (
( ( ph  /\  x  e.  ZZ )  ->  ( F `  -u x
)  =  -u ( F `  x )
)  <->  ( ( ph  /\  0  e.  ZZ )  ->  ( F `  -u 0 )  =  -u ( F `  0 ) ) ) )
80 monotoddzzfi.2 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( F `
 -u x )  = 
-u ( F `  x ) )
8164, 79, 80vtocl 3007 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  0  e.  ZZ )  ->  ( F `
 -u 0 )  = 
-u ( F ` 
0 ) )
8263, 81mpan2 654 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( F `  -u 0
)  =  -u ( F `  0 )
)
8374, 82syl5eqr 2483 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( F `  0
)  =  -u ( F `  0 )
)
8472, 83eqnegad 9737 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F `  0
)  =  0 )
8584adantr 453 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( F `  0
)  =  0 )
8685ad2antrr 708 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  e.  NN )  ->  ( F ` 
0 )  =  0 )
87 nngt0 10030 . . . . . . . . . . . . . . 15  |-  ( -u a  e.  NN  ->  0  <  -u a )
8887adantl 454 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  e.  NN )  ->  0  <  -u a
)
89 simplll 736 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  e.  NN )  ->  ph )
90 0nn0 10237 . . . . . . . . . . . . . . . 16  |-  0  e.  NN0
9190a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  e.  NN )  ->  0  e.  NN0 )
92 simplrl 738 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  e.  NN )  ->  -u a  e.  NN0 )
93 simpl 445 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  =  0  /\  y  =  -u a
)  ->  x  = 
0 )
9493eleq1d 2503 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  =  0  /\  y  =  -u a
)  ->  ( x  e.  NN0  <->  0  e.  NN0 ) )
95 simpr 449 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  =  0  /\  y  =  -u a
)  ->  y  =  -u a )
9695eleq1d 2503 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  =  0  /\  y  =  -u a
)  ->  ( y  e.  NN0  <->  -u a  e.  NN0 ) )
9794, 963anbi23d 1258 . . . . . . . . . . . . . . . . 17  |-  ( ( x  =  0  /\  y  =  -u a
)  ->  ( ( ph  /\  x  e.  NN0  /\  y  e.  NN0 )  <->  (
ph  /\  0  e.  NN0 
/\  -u a  e.  NN0 ) ) )
98 breq12 4218 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  =  0  /\  y  =  -u a
)  ->  ( x  <  y  <->  0  <  -u a
) )
9993fveq2d 5733 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  =  0  /\  y  =  -u a
)  ->  ( F `  x )  =  ( F `  0 ) )
10095fveq2d 5733 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  =  0  /\  y  =  -u a
)  ->  ( F `  y )  =  ( F `  -u a
) )
10199, 100breq12d 4226 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  =  0  /\  y  =  -u a
)  ->  ( ( F `  x )  <  ( F `  y
)  <->  ( F ` 
0 )  <  ( F `  -u a ) ) )
10298, 101imbi12d 313 . . . . . . . . . . . . . . . . 17  |-  ( ( x  =  0  /\  y  =  -u a
)  ->  ( (
x  <  y  ->  ( F `  x )  <  ( F `  y ) )  <->  ( 0  <  -u a  ->  ( F `  0 )  <  ( F `  -u a
) ) ) )
10397, 102imbi12d 313 . . . . . . . . . . . . . . . 16  |-  ( ( x  =  0  /\  y  =  -u a
)  ->  ( (
( ph  /\  x  e.  NN0  /\  y  e. 
NN0 )  ->  (
x  <  y  ->  ( F `  x )  <  ( F `  y ) ) )  <-> 
( ( ph  /\  0  e.  NN0  /\  -u a  e.  NN0 )  ->  (
0  <  -u a  -> 
( F `  0
)  <  ( F `  -u a ) ) ) ) )
10464, 54, 103, 35vtocl2 3008 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  0  e.  NN0 
/\  -u a  e.  NN0 )  ->  ( 0  <  -u a  ->  ( F `
 0 )  < 
( F `  -u a
) ) )
10589, 91, 92, 104syl3anc 1185 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  e.  NN )  ->  ( 0  <  -u a  ->  ( F `
 0 )  < 
( F `  -u a
) ) )
10688, 105mpd 15 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  e.  NN )  ->  ( F ` 
0 )  <  ( F `  -u a ) )
10786, 106eqbrtrrd 4235 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  e.  NN )  ->  0  <  ( F `  -u a ) )
10851, 62, 107ltled 9222 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  e.  NN )  ->  0  <_  ( F `  -u a ) )
109 0le0 10082 . . . . . . . . . . . . 13  |-  0  <_  0
11085ad2antrr 708 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  =  0 )  ->  ( F ` 
0 )  =  0 )
111109, 110syl5breqr 4249 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  =  0 )  ->  0  <_  ( F `  0 )
)
112 fveq2 5729 . . . . . . . . . . . . . 14  |-  ( -u a  =  0  ->  ( F `  -u a
)  =  ( F `
 0 ) )
113112breq2d 4225 . . . . . . . . . . . . 13  |-  ( -u a  =  0  ->  ( 0  <_  ( F `  -u a )  <->  0  <_  ( F `  0 ) ) )
114113adantl 454 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  =  0 )  ->  ( 0  <_ 
( F `  -u a
)  <->  0  <_  ( F `  0 )
) )
115111, 114mpbird 225 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  =  0 )  ->  0  <_  ( F `  -u a ) )
116 elnn0 10224 . . . . . . . . . . . . 13  |-  ( -u a  e.  NN0  <->  ( -u a  e.  NN  \/  -u a  =  0 ) )
117116biimpi 188 . . . . . . . . . . . 12  |-  ( -u a  e.  NN0  ->  ( -u a  e.  NN  \/  -u a  =  0 ) )
118117ad2antrl 710 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
( -u a  e.  NN  \/  -u a  =  0 ) )
119108, 115, 118mpjaodan 763 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
0  <_  ( F `  -u a ) )
120 negeq 9299 . . . . . . . . . . . . . . . 16  |-  ( x  =  a  ->  -u x  =  -u a )
121120fveq2d 5733 . . . . . . . . . . . . . . 15  |-  ( x  =  a  ->  ( F `  -u x )  =  ( F `  -u a ) )
1227negeqd 9301 . . . . . . . . . . . . . . 15  |-  ( x  =  a  ->  -u ( F `  x )  =  -u ( F `  a ) )
123121, 122eqeq12d 2451 . . . . . . . . . . . . . 14  |-  ( x  =  a  ->  (
( F `  -u x
)  =  -u ( F `  x )  <->  ( F `  -u a
)  =  -u ( F `  a )
) )
1246, 123imbi12d 313 . . . . . . . . . . . . 13  |-  ( x  =  a  ->  (
( ( ph  /\  x  e.  ZZ )  ->  ( F `  -u x
)  =  -u ( F `  x )
)  <->  ( ( ph  /\  a  e.  ZZ )  ->  ( F `  -u a )  =  -u ( F `  a ) ) ) )
125124, 80chvarv 1970 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( F `
 -u a )  = 
-u ( F `  a ) )
126125adantrr 699 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( F `  -u a
)  =  -u ( F `  a )
)
127126adantr 453 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
( F `  -u a
)  =  -u ( F `  a )
)
128119, 127breqtrd 4237 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
0  <_  -u ( F `
 a ) )
12940le0neg1d 9599 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
( ( F `  a )  <_  0  <->  0  <_  -u ( F `  a ) ) )
130128, 129mpbird 225 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
( F `  a
)  <_  0 )
13185adantr 453 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
( F `  0
)  =  0 )
132 nngt0 10030 . . . . . . . . . . 11  |-  ( b  e.  NN  ->  0  <  b )
133132ad2antll 711 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
0  <  b )
134 simpll 732 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  ->  ph )
13590a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
0  e.  NN0 )
13621ad2antll 711 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
b  e.  NN0 )
137 simpl 445 . . . . . . . . . . . . . . 15  |-  ( ( x  =  0  /\  y  =  b )  ->  x  =  0 )
138137eleq1d 2503 . . . . . . . . . . . . . 14  |-  ( ( x  =  0  /\  y  =  b )  ->  ( x  e. 
NN0 
<->  0  e.  NN0 )
)
139 simpr 449 . . . . . . . . . . . . . . 15  |-  ( ( x  =  0  /\  y  =  b )  ->  y  =  b )
140139eleq1d 2503 . . . . . . . . . . . . . 14  |-  ( ( x  =  0  /\  y  =  b )  ->  ( y  e. 
NN0 
<->  b  e.  NN0 )
)
141138, 1403anbi23d 1258 . . . . . . . . . . . . 13  |-  ( ( x  =  0  /\  y  =  b )  ->  ( ( ph  /\  x  e.  NN0  /\  y  e.  NN0 )  <->  ( ph  /\  0  e.  NN0  /\  b  e.  NN0 ) ) )
142 breq12 4218 . . . . . . . . . . . . . 14  |-  ( ( x  =  0  /\  y  =  b )  ->  ( x  < 
y  <->  0  <  b
) )
14367, 31breqan12d 4228 . . . . . . . . . . . . . 14  |-  ( ( x  =  0  /\  y  =  b )  ->  ( ( F `
 x )  < 
( F `  y
)  <->  ( F ` 
0 )  <  ( F `  b )
) )
144142, 143imbi12d 313 . . . . . . . . . . . . 13  |-  ( ( x  =  0  /\  y  =  b )  ->  ( ( x  <  y  ->  ( F `  x )  <  ( F `  y
) )  <->  ( 0  <  b  ->  ( F `  0 )  <  ( F `  b
) ) ) )
145141, 144imbi12d 313 . . . . . . . . . . . 12  |-  ( ( x  =  0  /\  y  =  b )  ->  ( ( (
ph  /\  x  e.  NN0 
/\  y  e.  NN0 )  ->  ( x  < 
y  ->  ( F `  x )  <  ( F `  y )
) )  <->  ( ( ph  /\  0  e.  NN0  /\  b  e.  NN0 )  ->  ( 0  <  b  ->  ( F `  0
)  <  ( F `  b ) ) ) ) )
14664, 24, 145, 35vtocl2 3008 . . . . . . . . . . 11  |-  ( (
ph  /\  0  e.  NN0 
/\  b  e.  NN0 )  ->  ( 0  < 
b  ->  ( F `  0 )  < 
( F `  b
) ) )
147134, 135, 136, 146syl3anc 1185 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
( 0  <  b  ->  ( F `  0
)  <  ( F `  b ) ) )
148133, 147mpd 15 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
( F `  0
)  <  ( F `  b ) )
149131, 148eqbrtrrd 4235 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
0  <  ( F `  b ) )
15040, 42, 50, 130, 149lelttrd 9229 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
( F `  a
)  <  ( F `  b ) )
151150a1d 24 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
( a  <  b  ->  ( F `  a
)  <  ( F `  b ) ) )
152151ex 425 . . . . 5  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( -u a  e.  NN0  /\  b  e.  NN )  ->  (
a  <  b  ->  ( F `  a )  <  ( F `  b ) ) ) )
153 simp3 960 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 )  /\  a  <  b )  ->  a  <  b )
154 zre 10287 . . . . . . . . . . . 12  |-  ( b  e.  ZZ  ->  b  e.  RR )
155154adantl 454 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  b  e.  RR )
156155ad2antlr 709 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 ) )  -> 
b  e.  RR )
157 1re 9091 . . . . . . . . . . 11  |-  1  e.  RR
158157a1i 11 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 ) )  -> 
1  e.  RR )
159 nnre 10008 . . . . . . . . . . 11  |-  ( a  e.  NN  ->  a  e.  RR )
160159ad2antrl 710 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 ) )  -> 
a  e.  RR )
16141a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 ) )  -> 
0  e.  RR )
162 nn0ge0 10248 . . . . . . . . . . . . 13  |-  ( -u b  e.  NN0  ->  0  <_ 
-u b )
163162ad2antll 711 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 ) )  -> 
0  <_  -u b )
164156le0neg1d 9599 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 ) )  -> 
( b  <_  0  <->  0  <_  -u b ) )
165163, 164mpbird 225 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 ) )  -> 
b  <_  0 )
166 0le1 9552 . . . . . . . . . . . 12  |-  0  <_  1
167166a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 ) )  -> 
0  <_  1 )
168156, 161, 158, 165, 167letrd 9228 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 ) )  -> 
b  <_  1 )
169 nnge1 10027 . . . . . . . . . . 11  |-  ( a  e.  NN  ->  1  <_  a )
170169ad2antrl 710 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 ) )  -> 
1  <_  a )
171156, 158, 160, 168, 170letrd 9228 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 ) )  -> 
b  <_  a )
172156, 160lenltd 9220 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 ) )  -> 
( b  <_  a  <->  -.  a  <  b ) )
173171, 172mpbid 203 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 ) )  ->  -.  a  <  b )
1741733adant3 978 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 )  /\  a  <  b )  ->  -.  a  <  b )
175153, 174pm2.21dd 102 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 )  /\  a  <  b )  ->  ( F `  a )  <  ( F `  b
) )
1761753exp 1153 . . . . 5  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( a  e.  NN  /\  -u b  e.  NN0 )  ->  (
a  <  b  ->  ( F `  a )  <  ( F `  b ) ) ) )
177 negex 9305 . . . . . . . . . . . 12  |-  -u b  e.  _V
178 simpl 445 . . . . . . . . . . . . . . 15  |-  ( ( x  =  -u b  /\  y  =  -u a
)  ->  x  =  -u b )
179178eleq1d 2503 . . . . . . . . . . . . . 14  |-  ( ( x  =  -u b  /\  y  =  -u a
)  ->  ( x  e.  NN0  <->  -u b  e.  NN0 ) )
180 simpr 449 . . . . . . . . . . . . . . 15  |-  ( ( x  =  -u b  /\  y  =  -u a
)  ->  y  =  -u a )
181180eleq1d 2503 . . . . . . . . . . . . . 14  |-  ( ( x  =  -u b  /\  y  =  -u a
)  ->  ( y  e.  NN0  <->  -u a  e.  NN0 ) )
182179, 1813anbi23d 1258 . . . . . . . . . . . . 13  |-  ( ( x  =  -u b  /\  y  =  -u a
)  ->  ( ( ph  /\  x  e.  NN0  /\  y  e.  NN0 )  <->  (
ph  /\  -u b  e. 
NN0  /\  -u a  e. 
NN0 ) ) )
183 breq12 4218 . . . . . . . . . . . . . 14  |-  ( ( x  =  -u b  /\  y  =  -u a
)  ->  ( x  <  y  <->  -u b  <  -u a
) )
184 fveq2 5729 . . . . . . . . . . . . . . 15  |-  ( x  =  -u b  ->  ( F `  x )  =  ( F `  -u b ) )
185 fveq2 5729 . . . . . . . . . . . . . . 15  |-  ( y  =  -u a  ->  ( F `  y )  =  ( F `  -u a ) )
186184, 185breqan12d 4228 . . . . . . . . . . . . . 14  |-  ( ( x  =  -u b  /\  y  =  -u a
)  ->  ( ( F `  x )  <  ( F `  y
)  <->  ( F `  -u b )  <  ( F `  -u a ) ) )
187183, 186imbi12d 313 . . . . . . . . . . . . 13  |-  ( ( x  =  -u b  /\  y  =  -u a
)  ->  ( (
x  <  y  ->  ( F `  x )  <  ( F `  y ) )  <->  ( -u b  <  -u a  ->  ( F `  -u b )  <  ( F `  -u a ) ) ) )
188182, 187imbi12d 313 . . . . . . . . . . . 12  |-  ( ( x  =  -u b  /\  y  =  -u a
)  ->  ( (
( ph  /\  x  e.  NN0  /\  y  e. 
NN0 )  ->  (
x  <  y  ->  ( F `  x )  <  ( F `  y ) ) )  <-> 
( ( ph  /\  -u b  e.  NN0  /\  -u a  e.  NN0 )  ->  ( -u b  <  -u a  ->  ( F `
 -u b )  < 
( F `  -u a
) ) ) ) )
189177, 54, 188, 35vtocl2 3008 . . . . . . . . . . 11  |-  ( (
ph  /\  -u b  e. 
NN0  /\  -u a  e. 
NN0 )  ->  ( -u b  <  -u a  ->  ( F `  -u b
)  <  ( F `  -u a ) ) )
1901893com23 1160 . . . . . . . . . 10  |-  ( (
ph  /\  -u a  e. 
NN0  /\  -u b  e. 
NN0 )  ->  ( -u b  <  -u a  ->  ( F `  -u b
)  <  ( F `  -u a ) ) )
1911903expb 1155 . . . . . . . . 9  |-  ( (
ph  /\  ( -u a  e.  NN0  /\  -u b  e.  NN0 ) )  -> 
( -u b  <  -u a  ->  ( F `  -u b
)  <  ( F `  -u a ) ) )
192191adantlr 697 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  -u b  e.  NN0 ) )  -> 
( -u b  <  -u a  ->  ( F `  -u b
)  <  ( F `  -u a ) ) )
193 negeq 9299 . . . . . . . . . . . . . . 15  |-  ( x  =  b  ->  -u x  =  -u b )
194193fveq2d 5733 . . . . . . . . . . . . . 14  |-  ( x  =  b  ->  ( F `  -u x )  =  ( F `  -u b ) )
19545negeqd 9301 . . . . . . . . . . . . . 14  |-  ( x  =  b  ->  -u ( F `  x )  =  -u ( F `  b ) )
196194, 195eqeq12d 2451 . . . . . . . . . . . . 13  |-  ( x  =  b  ->  (
( F `  -u x
)  =  -u ( F `  x )  <->  ( F `  -u b
)  =  -u ( F `  b )
) )
19744, 196imbi12d 313 . . . . . . . . . . . 12  |-  ( x  =  b  ->  (
( ( ph  /\  x  e.  ZZ )  ->  ( F `  -u x
)  =  -u ( F `  x )
)  <->  ( ( ph  /\  b  e.  ZZ )  ->  ( F `  -u b )  =  -u ( F `  b ) ) ) )
198197, 80chvarv 1970 . . . . . . . . . . 11  |-  ( (
ph  /\  b  e.  ZZ )  ->  ( F `
 -u b )  = 
-u ( F `  b ) )
199198adantrl 698 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( F `  -u b
)  =  -u ( F `  b )
)
200199adantr 453 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  -u b  e.  NN0 ) )  -> 
( F `  -u b
)  =  -u ( F `  b )
)
201126adantr 453 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  -u b  e.  NN0 ) )  -> 
( F `  -u a
)  =  -u ( F `  a )
)
202200, 201breq12d 4226 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  -u b  e.  NN0 ) )  -> 
( ( F `  -u b )  <  ( F `  -u a )  <->  -u ( F `  b
)  <  -u ( F `
 a ) ) )
203192, 202sylibd 207 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  -u b  e.  NN0 ) )  -> 
( -u b  <  -u a  -> 
-u ( F `  b )  <  -u ( F `  a )
) )
204 zre 10287 . . . . . . . . . 10  |-  ( a  e.  ZZ  ->  a  e.  RR )
205204ad2antrl 710 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
a  e.  RR )
206205adantr 453 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  -u b  e.  NN0 ) )  -> 
a  e.  RR )
207155ad2antlr 709 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  -u b  e.  NN0 ) )  -> 
b  e.  RR )
208206, 207ltnegd 9605 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  -u b  e.  NN0 ) )  -> 
( a  <  b  <->  -u b  <  -u a
) )
20939adantr 453 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  -u b  e.  NN0 ) )  -> 
( F `  a
)  e.  RR )
21049adantr 453 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  -u b  e.  NN0 ) )  -> 
( F `  b
)  e.  RR )
211209, 210ltnegd 9605 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  -u b  e.  NN0 ) )  -> 
( ( F `  a )  <  ( F `  b )  <->  -u ( F `  b
)  <  -u ( F `
 a ) ) )
212203, 208, 2113imtr4d 261 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  -u b  e.  NN0 ) )  -> 
( a  <  b  ->  ( F `  a
)  <  ( F `  b ) ) )
213212ex 425 . . . . 5  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( -u a  e.  NN0  /\  -u b  e.  NN0 )  ->  (
a  <  b  ->  ( F `  a )  <  ( F `  b ) ) ) )
21438, 152, 176, 213ccased 915 . . . 4  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( ( a  e.  NN  \/  -u a  e.  NN0 )  /\  (
b  e.  NN  \/  -u b  e.  NN0 )
)  ->  ( a  <  b  ->  ( F `  a )  <  ( F `  b )
) ) )
21517, 214mpd 15 . . 3  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( a  <  b  ->  ( F `  a
)  <  ( F `  b ) ) )
2161, 2, 3, 4, 11, 215ltord1 9554 . 2  |-  ( (
ph  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  -> 
( A  <  B  <->  ( F `  A )  <  ( F `  B ) ) )
2172163impb 1150 1  |-  ( (
ph  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  < 
B  <->  ( F `  A )  <  ( F `  B )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   class class class wbr 4213   ` cfv 5455   RRcr 8990   0cc0 8991   1c1 8992    < clt 9121    <_ cle 9122   -ucneg 9293   NNcn 10001   NN0cn0 10222   ZZcz 10283
This theorem is referenced by:  monotoddzz  27007
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-mulcom 9055  ax-addass 9056  ax-mulass 9057  ax-distr 9058  ax-i2m1 9059  ax-1ne0 9060  ax-1rid 9061  ax-rnegex 9062  ax-rrecex 9063  ax-cnre 9064  ax-pre-lttri 9065  ax-pre-lttrn 9066  ax-pre-ltadd 9067  ax-pre-mulgt0 9068
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-riota 6550  df-recs 6634  df-rdg 6669  df-er 6906  df-en 7111  df-dom 7112  df-sdom 7113  df-pnf 9123  df-mnf 9124  df-xr 9125  df-ltxr 9126  df-le 9127  df-sub 9294  df-neg 9295  df-nn 10002  df-n0 10223  df-z 10284
  Copyright terms: Public domain W3C validator