Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  monotoddzzfi Unicode version

Theorem monotoddzzfi 26350
Description: A function which is odd and monotonic on  NN0 is monotonic on  ZZ. This proof is far too long. (Contributed by Stefan O'Rear, 25-Sep-2014.)
Hypotheses
Ref Expression
monotoddzzfi.1  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( F `
 x )  e.  RR )
monotoddzzfi.2  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( F `
 -u x )  = 
-u ( F `  x ) )
monotoddzzfi.3  |-  ( (
ph  /\  x  e.  NN0 
/\  y  e.  NN0 )  ->  ( x  < 
y  ->  ( F `  x )  <  ( F `  y )
) )
Assertion
Ref Expression
monotoddzzfi  |-  ( (
ph  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  < 
B  <->  ( F `  A )  <  ( F `  B )
) )
Distinct variable groups:    ph, x, y   
x, A, y    x, B, y    x, F, y

Proof of Theorem monotoddzzfi
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5605 . . 3  |-  ( a  =  b  ->  ( F `  a )  =  ( F `  b ) )
2 fveq2 5605 . . 3  |-  ( a  =  A  ->  ( F `  a )  =  ( F `  A ) )
3 fveq2 5605 . . 3  |-  ( a  =  B  ->  ( F `  a )  =  ( F `  B ) )
4 zssre 10120 . . 3  |-  ZZ  C_  RR
5 eleq1 2418 . . . . . 6  |-  ( x  =  a  ->  (
x  e.  ZZ  <->  a  e.  ZZ ) )
65anbi2d 684 . . . . 5  |-  ( x  =  a  ->  (
( ph  /\  x  e.  ZZ )  <->  ( ph  /\  a  e.  ZZ ) ) )
7 fveq2 5605 . . . . . 6  |-  ( x  =  a  ->  ( F `  x )  =  ( F `  a ) )
87eleq1d 2424 . . . . 5  |-  ( x  =  a  ->  (
( F `  x
)  e.  RR  <->  ( F `  a )  e.  RR ) )
96, 8imbi12d 311 . . . 4  |-  ( x  =  a  ->  (
( ( ph  /\  x  e.  ZZ )  ->  ( F `  x
)  e.  RR )  <-> 
( ( ph  /\  a  e.  ZZ )  ->  ( F `  a
)  e.  RR ) ) )
10 monotoddzzfi.1 . . . 4  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( F `
 x )  e.  RR )
119, 10chvarv 2018 . . 3  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( F `
 a )  e.  RR )
12 elznn 10128 . . . . . . 7  |-  ( a  e.  ZZ  <->  ( a  e.  RR  /\  ( a  e.  NN  \/  -u a  e.  NN0 ) ) )
1312simprbi 450 . . . . . 6  |-  ( a  e.  ZZ  ->  (
a  e.  NN  \/  -u a  e.  NN0 )
)
14 elznn 10128 . . . . . . 7  |-  ( b  e.  ZZ  <->  ( b  e.  RR  /\  ( b  e.  NN  \/  -u b  e.  NN0 ) ) )
1514simprbi 450 . . . . . 6  |-  ( b  e.  ZZ  ->  (
b  e.  NN  \/  -u b  e.  NN0 )
)
1613, 15anim12i 549 . . . . 5  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( a  e.  NN  \/  -u a  e.  NN0 )  /\  (
b  e.  NN  \/  -u b  e.  NN0 )
) )
1716adantl 452 . . . 4  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( a  e.  NN  \/  -u a  e.  NN0 )  /\  (
b  e.  NN  \/  -u b  e.  NN0 )
) )
18 simpll 730 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  b  e.  NN ) )  ->  ph )
19 nnnn0 10061 . . . . . . . 8  |-  ( a  e.  NN  ->  a  e.  NN0 )
2019ad2antrl 708 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  b  e.  NN ) )  -> 
a  e.  NN0 )
21 nnnn0 10061 . . . . . . . 8  |-  ( b  e.  NN  ->  b  e.  NN0 )
2221ad2antll 709 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  b  e.  NN ) )  -> 
b  e.  NN0 )
23 vex 2867 . . . . . . . 8  |-  a  e. 
_V
24 vex 2867 . . . . . . . 8  |-  b  e. 
_V
25 simpl 443 . . . . . . . . . . 11  |-  ( ( x  =  a  /\  y  =  b )  ->  x  =  a )
2625eleq1d 2424 . . . . . . . . . 10  |-  ( ( x  =  a  /\  y  =  b )  ->  ( x  e.  NN0  <->  a  e.  NN0 ) )
27 simpr 447 . . . . . . . . . . 11  |-  ( ( x  =  a  /\  y  =  b )  ->  y  =  b )
2827eleq1d 2424 . . . . . . . . . 10  |-  ( ( x  =  a  /\  y  =  b )  ->  ( y  e.  NN0  <->  b  e.  NN0 ) )
2926, 283anbi23d 1255 . . . . . . . . 9  |-  ( ( x  =  a  /\  y  =  b )  ->  ( ( ph  /\  x  e.  NN0  /\  y  e.  NN0 )  <->  ( ph  /\  a  e.  NN0  /\  b  e.  NN0 ) ) )
30 breq12 4107 . . . . . . . . . 10  |-  ( ( x  =  a  /\  y  =  b )  ->  ( x  <  y  <->  a  <  b ) )
31 fveq2 5605 . . . . . . . . . . 11  |-  ( y  =  b  ->  ( F `  y )  =  ( F `  b ) )
327, 31breqan12d 4117 . . . . . . . . . 10  |-  ( ( x  =  a  /\  y  =  b )  ->  ( ( F `  x )  <  ( F `  y )  <->  ( F `  a )  <  ( F `  b ) ) )
3330, 32imbi12d 311 . . . . . . . . 9  |-  ( ( x  =  a  /\  y  =  b )  ->  ( ( x  < 
y  ->  ( F `  x )  <  ( F `  y )
)  <->  ( a  < 
b  ->  ( F `  a )  <  ( F `  b )
) ) )
3429, 33imbi12d 311 . . . . . . . 8  |-  ( ( x  =  a  /\  y  =  b )  ->  ( ( ( ph  /\  x  e.  NN0  /\  y  e.  NN0 )  -> 
( x  <  y  ->  ( F `  x
)  <  ( F `  y ) ) )  <-> 
( ( ph  /\  a  e.  NN0  /\  b  e.  NN0 )  ->  (
a  <  b  ->  ( F `  a )  <  ( F `  b ) ) ) ) )
35 monotoddzzfi.3 . . . . . . . 8  |-  ( (
ph  /\  x  e.  NN0 
/\  y  e.  NN0 )  ->  ( x  < 
y  ->  ( F `  x )  <  ( F `  y )
) )
3623, 24, 34, 35vtocl2 2915 . . . . . . 7  |-  ( (
ph  /\  a  e.  NN0 
/\  b  e.  NN0 )  ->  ( a  < 
b  ->  ( F `  a )  <  ( F `  b )
) )
3718, 20, 22, 36syl3anc 1182 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  b  e.  NN ) )  -> 
( a  <  b  ->  ( F `  a
)  <  ( F `  b ) ) )
3837ex 423 . . . . 5  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( a  e.  NN  /\  b  e.  NN )  ->  (
a  <  b  ->  ( F `  a )  <  ( F `  b ) ) ) )
3911adantrr 697 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( F `  a
)  e.  RR )
4039adantr 451 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
( F `  a
)  e.  RR )
41 0re 8925 . . . . . . . . 9  |-  0  e.  RR
4241a1i 10 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
0  e.  RR )
43 eleq1 2418 . . . . . . . . . . . . 13  |-  ( x  =  b  ->  (
x  e.  ZZ  <->  b  e.  ZZ ) )
4443anbi2d 684 . . . . . . . . . . . 12  |-  ( x  =  b  ->  (
( ph  /\  x  e.  ZZ )  <->  ( ph  /\  b  e.  ZZ ) ) )
45 fveq2 5605 . . . . . . . . . . . . 13  |-  ( x  =  b  ->  ( F `  x )  =  ( F `  b ) )
4645eleq1d 2424 . . . . . . . . . . . 12  |-  ( x  =  b  ->  (
( F `  x
)  e.  RR  <->  ( F `  b )  e.  RR ) )
4744, 46imbi12d 311 . . . . . . . . . . 11  |-  ( x  =  b  ->  (
( ( ph  /\  x  e.  ZZ )  ->  ( F `  x
)  e.  RR )  <-> 
( ( ph  /\  b  e.  ZZ )  ->  ( F `  b
)  e.  RR ) ) )
4847, 10chvarv 2018 . . . . . . . . . 10  |-  ( (
ph  /\  b  e.  ZZ )  ->  ( F `
 b )  e.  RR )
4948adantrl 696 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( F `  b
)  e.  RR )
5049adantr 451 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
( F `  b
)  e.  RR )
5141a1i 10 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  e.  NN )  ->  0  e.  RR )
52 znegcl 10144 . . . . . . . . . . . . . . 15  |-  ( a  e.  ZZ  ->  -u a  e.  ZZ )
5352ad2antrl 708 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  -u a  e.  ZZ )
54 negex 9137 . . . . . . . . . . . . . . 15  |-  -u a  e.  _V
55 eleq1 2418 . . . . . . . . . . . . . . . . 17  |-  ( x  =  -u a  ->  (
x  e.  ZZ  <->  -u a  e.  ZZ ) )
5655anbi2d 684 . . . . . . . . . . . . . . . 16  |-  ( x  =  -u a  ->  (
( ph  /\  x  e.  ZZ )  <->  ( ph  /\  -u a  e.  ZZ ) ) )
57 fveq2 5605 . . . . . . . . . . . . . . . . 17  |-  ( x  =  -u a  ->  ( F `  x )  =  ( F `  -u a ) )
5857eleq1d 2424 . . . . . . . . . . . . . . . 16  |-  ( x  =  -u a  ->  (
( F `  x
)  e.  RR  <->  ( F `  -u a )  e.  RR ) )
5956, 58imbi12d 311 . . . . . . . . . . . . . . 15  |-  ( x  =  -u a  ->  (
( ( ph  /\  x  e.  ZZ )  ->  ( F `  x
)  e.  RR )  <-> 
( ( ph  /\  -u a  e.  ZZ )  ->  ( F `  -u a )  e.  RR ) ) )
6054, 59, 10vtocl 2914 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  -u a  e.  ZZ )  ->  ( F `  -u a )  e.  RR )
6153, 60syldan 456 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( F `  -u a
)  e.  RR )
6261ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  e.  NN )  ->  ( F `  -u a )  e.  RR )
63 neg0 9180 . . . . . . . . . . . . . . . . . 18  |-  -u 0  =  0
6463fveq2i 5608 . . . . . . . . . . . . . . . . 17  |-  ( F `
 -u 0 )  =  ( F `  0
)
65 0z 10124 . . . . . . . . . . . . . . . . . 18  |-  0  e.  ZZ
66 c0ex 8919 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  _V
67 eleq1 2418 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  0  ->  (
x  e.  ZZ  <->  0  e.  ZZ ) )
6867anbi2d 684 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  0  ->  (
( ph  /\  x  e.  ZZ )  <->  ( ph  /\  0  e.  ZZ ) ) )
69 negeq 9131 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  0  ->  -u x  =  -u 0 )
7069fveq2d 5609 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  0  ->  ( F `  -u x )  =  ( F `  -u 0 ) )
71 fveq2 5605 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  0  ->  ( F `  x )  =  ( F ` 
0 ) )
7271negeqd 9133 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  0  ->  -u ( F `  x )  =  -u ( F ` 
0 ) )
7370, 72eqeq12d 2372 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  0  ->  (
( F `  -u x
)  =  -u ( F `  x )  <->  ( F `  -u 0
)  =  -u ( F `  0 )
) )
7468, 73imbi12d 311 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  0  ->  (
( ( ph  /\  x  e.  ZZ )  ->  ( F `  -u x
)  =  -u ( F `  x )
)  <->  ( ( ph  /\  0  e.  ZZ )  ->  ( F `  -u 0 )  =  -u ( F `  0 ) ) ) )
75 monotoddzzfi.2 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( F `
 -u x )  = 
-u ( F `  x ) )
7666, 74, 75vtocl 2914 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  0  e.  ZZ )  ->  ( F `
 -u 0 )  = 
-u ( F ` 
0 ) )
7765, 76mpan2 652 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( F `  -u 0
)  =  -u ( F `  0 )
)
7864, 77syl5eqr 2404 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( F `  0
)  =  -u ( F `  0 )
)
7971eleq1d 2424 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  0  ->  (
( F `  x
)  e.  RR  <->  ( F `  0 )  e.  RR ) )
8068, 79imbi12d 311 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  0  ->  (
( ( ph  /\  x  e.  ZZ )  ->  ( F `  x
)  e.  RR )  <-> 
( ( ph  /\  0  e.  ZZ )  ->  ( F `  0
)  e.  RR ) ) )
8166, 80, 10vtocl 2914 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  0  e.  ZZ )  ->  ( F `
 0 )  e.  RR )
8265, 81mpan2 652 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( F `  0
)  e.  RR )
8382recnd 8948 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( F `  0
)  e.  CC )
84 eqneg 9567 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  0 )  e.  CC  ->  (
( F `  0
)  =  -u ( F `  0 )  <->  ( F `  0 )  =  0 ) )
8583, 84syl 15 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( F ` 
0 )  =  -u ( F `  0 )  <-> 
( F `  0
)  =  0 ) )
8678, 85mpbid 201 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F `  0
)  =  0 )
8786adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( F `  0
)  =  0 )
8887ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  e.  NN )  ->  ( F ` 
0 )  =  0 )
89 nngt0 9862 . . . . . . . . . . . . . . 15  |-  ( -u a  e.  NN  ->  0  <  -u a )
9089adantl 452 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  e.  NN )  ->  0  <  -u a
)
91 simplll 734 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  e.  NN )  ->  ph )
92 0nn0 10069 . . . . . . . . . . . . . . . 16  |-  0  e.  NN0
9392a1i 10 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  e.  NN )  ->  0  e.  NN0 )
94 simplrl 736 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  e.  NN )  ->  -u a  e.  NN0 )
95 simpl 443 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  =  0  /\  y  =  -u a
)  ->  x  = 
0 )
9695eleq1d 2424 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  =  0  /\  y  =  -u a
)  ->  ( x  e.  NN0  <->  0  e.  NN0 ) )
97 simpr 447 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  =  0  /\  y  =  -u a
)  ->  y  =  -u a )
9897eleq1d 2424 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  =  0  /\  y  =  -u a
)  ->  ( y  e.  NN0  <->  -u a  e.  NN0 ) )
9996, 983anbi23d 1255 . . . . . . . . . . . . . . . . 17  |-  ( ( x  =  0  /\  y  =  -u a
)  ->  ( ( ph  /\  x  e.  NN0  /\  y  e.  NN0 )  <->  (
ph  /\  0  e.  NN0 
/\  -u a  e.  NN0 ) ) )
100 breq12 4107 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  =  0  /\  y  =  -u a
)  ->  ( x  <  y  <->  0  <  -u a
) )
10195fveq2d 5609 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  =  0  /\  y  =  -u a
)  ->  ( F `  x )  =  ( F `  0 ) )
10297fveq2d 5609 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  =  0  /\  y  =  -u a
)  ->  ( F `  y )  =  ( F `  -u a
) )
103101, 102breq12d 4115 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  =  0  /\  y  =  -u a
)  ->  ( ( F `  x )  <  ( F `  y
)  <->  ( F ` 
0 )  <  ( F `  -u a ) ) )
104100, 103imbi12d 311 . . . . . . . . . . . . . . . . 17  |-  ( ( x  =  0  /\  y  =  -u a
)  ->  ( (
x  <  y  ->  ( F `  x )  <  ( F `  y ) )  <->  ( 0  <  -u a  ->  ( F `  0 )  <  ( F `  -u a
) ) ) )
10599, 104imbi12d 311 . . . . . . . . . . . . . . . 16  |-  ( ( x  =  0  /\  y  =  -u a
)  ->  ( (
( ph  /\  x  e.  NN0  /\  y  e. 
NN0 )  ->  (
x  <  y  ->  ( F `  x )  <  ( F `  y ) ) )  <-> 
( ( ph  /\  0  e.  NN0  /\  -u a  e.  NN0 )  ->  (
0  <  -u a  -> 
( F `  0
)  <  ( F `  -u a ) ) ) ) )
10666, 54, 105, 35vtocl2 2915 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  0  e.  NN0 
/\  -u a  e.  NN0 )  ->  ( 0  <  -u a  ->  ( F `
 0 )  < 
( F `  -u a
) ) )
10791, 93, 94, 106syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  e.  NN )  ->  ( 0  <  -u a  ->  ( F `
 0 )  < 
( F `  -u a
) ) )
10890, 107mpd 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  e.  NN )  ->  ( F ` 
0 )  <  ( F `  -u a ) )
10988, 108eqbrtrrd 4124 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  e.  NN )  ->  0  <  ( F `  -u a ) )
11051, 62, 109ltled 9054 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  e.  NN )  ->  0  <_  ( F `  -u a ) )
111 0le0 9914 . . . . . . . . . . . . 13  |-  0  <_  0
11287ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  =  0 )  ->  ( F ` 
0 )  =  0 )
113111, 112syl5breqr 4138 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  =  0 )  ->  0  <_  ( F `  0 )
)
114 fveq2 5605 . . . . . . . . . . . . . 14  |-  ( -u a  =  0  ->  ( F `  -u a
)  =  ( F `
 0 ) )
115114breq2d 4114 . . . . . . . . . . . . 13  |-  ( -u a  =  0  ->  ( 0  <_  ( F `  -u a )  <->  0  <_  ( F `  0 ) ) )
116115adantl 452 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  =  0 )  ->  ( 0  <_ 
( F `  -u a
)  <->  0  <_  ( F `  0 )
) )
117113, 116mpbird 223 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  /\  -u a  =  0 )  ->  0  <_  ( F `  -u a ) )
118 elnn0 10056 . . . . . . . . . . . . 13  |-  ( -u a  e.  NN0  <->  ( -u a  e.  NN  \/  -u a  =  0 ) )
119118biimpi 186 . . . . . . . . . . . 12  |-  ( -u a  e.  NN0  ->  ( -u a  e.  NN  \/  -u a  =  0 ) )
120119ad2antrl 708 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
( -u a  e.  NN  \/  -u a  =  0 ) )
121110, 117, 120mpjaodan 761 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
0  <_  ( F `  -u a ) )
122 negeq 9131 . . . . . . . . . . . . . . . 16  |-  ( x  =  a  ->  -u x  =  -u a )
123122fveq2d 5609 . . . . . . . . . . . . . . 15  |-  ( x  =  a  ->  ( F `  -u x )  =  ( F `  -u a ) )
1247negeqd 9133 . . . . . . . . . . . . . . 15  |-  ( x  =  a  ->  -u ( F `  x )  =  -u ( F `  a ) )
125123, 124eqeq12d 2372 . . . . . . . . . . . . . 14  |-  ( x  =  a  ->  (
( F `  -u x
)  =  -u ( F `  x )  <->  ( F `  -u a
)  =  -u ( F `  a )
) )
1266, 125imbi12d 311 . . . . . . . . . . . . 13  |-  ( x  =  a  ->  (
( ( ph  /\  x  e.  ZZ )  ->  ( F `  -u x
)  =  -u ( F `  x )
)  <->  ( ( ph  /\  a  e.  ZZ )  ->  ( F `  -u a )  =  -u ( F `  a ) ) ) )
127126, 75chvarv 2018 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( F `
 -u a )  = 
-u ( F `  a ) )
128127adantrr 697 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( F `  -u a
)  =  -u ( F `  a )
)
129128adantr 451 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
( F `  -u a
)  =  -u ( F `  a )
)
130121, 129breqtrd 4126 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
0  <_  -u ( F `
 a ) )
13140le0neg1d 9431 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
( ( F `  a )  <_  0  <->  0  <_  -u ( F `  a ) ) )
132130, 131mpbird 223 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
( F `  a
)  <_  0 )
13387adantr 451 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
( F `  0
)  =  0 )
134 nngt0 9862 . . . . . . . . . . 11  |-  ( b  e.  NN  ->  0  <  b )
135134ad2antll 709 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
0  <  b )
136 simpll 730 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  ->  ph )
13792a1i 10 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
0  e.  NN0 )
13821ad2antll 709 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
b  e.  NN0 )
139 simpl 443 . . . . . . . . . . . . . . 15  |-  ( ( x  =  0  /\  y  =  b )  ->  x  =  0 )
140139eleq1d 2424 . . . . . . . . . . . . . 14  |-  ( ( x  =  0  /\  y  =  b )  ->  ( x  e. 
NN0 
<->  0  e.  NN0 )
)
141 simpr 447 . . . . . . . . . . . . . . 15  |-  ( ( x  =  0  /\  y  =  b )  ->  y  =  b )
142141eleq1d 2424 . . . . . . . . . . . . . 14  |-  ( ( x  =  0  /\  y  =  b )  ->  ( y  e. 
NN0 
<->  b  e.  NN0 )
)
143140, 1423anbi23d 1255 . . . . . . . . . . . . 13  |-  ( ( x  =  0  /\  y  =  b )  ->  ( ( ph  /\  x  e.  NN0  /\  y  e.  NN0 )  <->  ( ph  /\  0  e.  NN0  /\  b  e.  NN0 ) ) )
144 breq12 4107 . . . . . . . . . . . . . 14  |-  ( ( x  =  0  /\  y  =  b )  ->  ( x  < 
y  <->  0  <  b
) )
14571, 31breqan12d 4117 . . . . . . . . . . . . . 14  |-  ( ( x  =  0  /\  y  =  b )  ->  ( ( F `
 x )  < 
( F `  y
)  <->  ( F ` 
0 )  <  ( F `  b )
) )
146144, 145imbi12d 311 . . . . . . . . . . . . 13  |-  ( ( x  =  0  /\  y  =  b )  ->  ( ( x  <  y  ->  ( F `  x )  <  ( F `  y
) )  <->  ( 0  <  b  ->  ( F `  0 )  <  ( F `  b
) ) ) )
147143, 146imbi12d 311 . . . . . . . . . . . 12  |-  ( ( x  =  0  /\  y  =  b )  ->  ( ( (
ph  /\  x  e.  NN0 
/\  y  e.  NN0 )  ->  ( x  < 
y  ->  ( F `  x )  <  ( F `  y )
) )  <->  ( ( ph  /\  0  e.  NN0  /\  b  e.  NN0 )  ->  ( 0  <  b  ->  ( F `  0
)  <  ( F `  b ) ) ) ) )
14866, 24, 147, 35vtocl2 2915 . . . . . . . . . . 11  |-  ( (
ph  /\  0  e.  NN0 
/\  b  e.  NN0 )  ->  ( 0  < 
b  ->  ( F `  0 )  < 
( F `  b
) ) )
149136, 137, 138, 148syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
( 0  <  b  ->  ( F `  0
)  <  ( F `  b ) ) )
150135, 149mpd 14 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
( F `  0
)  <  ( F `  b ) )
151133, 150eqbrtrrd 4124 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
0  <  ( F `  b ) )
15240, 42, 50, 132, 151lelttrd 9061 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
( F `  a
)  <  ( F `  b ) )
153152a1d 22 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  b  e.  NN ) )  -> 
( a  <  b  ->  ( F `  a
)  <  ( F `  b ) ) )
154153ex 423 . . . . 5  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( -u a  e.  NN0  /\  b  e.  NN )  ->  (
a  <  b  ->  ( F `  a )  <  ( F `  b ) ) ) )
155 simp3 957 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 )  /\  a  <  b )  ->  a  <  b )
156 zre 10117 . . . . . . . . . . . 12  |-  ( b  e.  ZZ  ->  b  e.  RR )
157156adantl 452 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  b  e.  RR )
158157ad2antlr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 ) )  -> 
b  e.  RR )
159 1re 8924 . . . . . . . . . . 11  |-  1  e.  RR
160159a1i 10 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 ) )  -> 
1  e.  RR )
161 nnre 9840 . . . . . . . . . . 11  |-  ( a  e.  NN  ->  a  e.  RR )
162161ad2antrl 708 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 ) )  -> 
a  e.  RR )
16341a1i 10 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 ) )  -> 
0  e.  RR )
164 nn0ge0 10080 . . . . . . . . . . . . 13  |-  ( -u b  e.  NN0  ->  0  <_ 
-u b )
165164ad2antll 709 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 ) )  -> 
0  <_  -u b )
166158le0neg1d 9431 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 ) )  -> 
( b  <_  0  <->  0  <_  -u b ) )
167165, 166mpbird 223 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 ) )  -> 
b  <_  0 )
168 0le1 9384 . . . . . . . . . . . 12  |-  0  <_  1
169168a1i 10 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 ) )  -> 
0  <_  1 )
170158, 163, 160, 167, 169letrd 9060 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 ) )  -> 
b  <_  1 )
171 nnge1 9859 . . . . . . . . . . 11  |-  ( a  e.  NN  ->  1  <_  a )
172171ad2antrl 708 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 ) )  -> 
1  <_  a )
173158, 160, 162, 170, 172letrd 9060 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 ) )  -> 
b  <_  a )
174158, 162lenltd 9052 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 ) )  -> 
( b  <_  a  <->  -.  a  <  b ) )
175173, 174mpbid 201 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 ) )  ->  -.  a  <  b )
1761753adant3 975 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 )  /\  a  <  b )  ->  -.  a  <  b )
177 pm2.24 101 . . . . . . 7  |-  ( a  <  b  ->  ( -.  a  <  b  -> 
( F `  a
)  <  ( F `  b ) ) )
178155, 176, 177sylc 56 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( a  e.  NN  /\  -u b  e.  NN0 )  /\  a  <  b )  ->  ( F `  a )  <  ( F `  b
) )
1791783exp 1150 . . . . 5  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( a  e.  NN  /\  -u b  e.  NN0 )  ->  (
a  <  b  ->  ( F `  a )  <  ( F `  b ) ) ) )
180 negex 9137 . . . . . . . . . . . 12  |-  -u b  e.  _V
181 simpl 443 . . . . . . . . . . . . . . 15  |-  ( ( x  =  -u b  /\  y  =  -u a
)  ->  x  =  -u b )
182181eleq1d 2424 . . . . . . . . . . . . . 14  |-  ( ( x  =  -u b  /\  y  =  -u a
)  ->  ( x  e.  NN0  <->  -u b  e.  NN0 ) )
183 simpr 447 . . . . . . . . . . . . . . 15  |-  ( ( x  =  -u b  /\  y  =  -u a
)  ->  y  =  -u a )
184183eleq1d 2424 . . . . . . . . . . . . . 14  |-  ( ( x  =  -u b  /\  y  =  -u a
)  ->  ( y  e.  NN0  <->  -u a  e.  NN0 ) )
185182, 1843anbi23d 1255 . . . . . . . . . . . . 13  |-  ( ( x  =  -u b  /\  y  =  -u a
)  ->  ( ( ph  /\  x  e.  NN0  /\  y  e.  NN0 )  <->  (
ph  /\  -u b  e. 
NN0  /\  -u a  e. 
NN0 ) ) )
186 breq12 4107 . . . . . . . . . . . . . 14  |-  ( ( x  =  -u b  /\  y  =  -u a
)  ->  ( x  <  y  <->  -u b  <  -u a
) )
187 fveq2 5605 . . . . . . . . . . . . . . 15  |-  ( x  =  -u b  ->  ( F `  x )  =  ( F `  -u b ) )
188 fveq2 5605 . . . . . . . . . . . . . . 15  |-  ( y  =  -u a  ->  ( F `  y )  =  ( F `  -u a ) )
189187, 188breqan12d 4117 . . . . . . . . . . . . . 14  |-  ( ( x  =  -u b  /\  y  =  -u a
)  ->  ( ( F `  x )  <  ( F `  y
)  <->  ( F `  -u b )  <  ( F `  -u a ) ) )
190186, 189imbi12d 311 . . . . . . . . . . . . 13  |-  ( ( x  =  -u b  /\  y  =  -u a
)  ->  ( (
x  <  y  ->  ( F `  x )  <  ( F `  y ) )  <->  ( -u b  <  -u a  ->  ( F `  -u b )  <  ( F `  -u a ) ) ) )
191185, 190imbi12d 311 . . . . . . . . . . . 12  |-  ( ( x  =  -u b  /\  y  =  -u a
)  ->  ( (
( ph  /\  x  e.  NN0  /\  y  e. 
NN0 )  ->  (
x  <  y  ->  ( F `  x )  <  ( F `  y ) ) )  <-> 
( ( ph  /\  -u b  e.  NN0  /\  -u a  e.  NN0 )  ->  ( -u b  <  -u a  ->  ( F `
 -u b )  < 
( F `  -u a
) ) ) ) )
192180, 54, 191, 35vtocl2 2915 . . . . . . . . . . 11  |-  ( (
ph  /\  -u b  e. 
NN0  /\  -u a  e. 
NN0 )  ->  ( -u b  <  -u a  ->  ( F `  -u b
)  <  ( F `  -u a ) ) )
1931923com23 1157 . . . . . . . . . 10  |-  ( (
ph  /\  -u a  e. 
NN0  /\  -u b  e. 
NN0 )  ->  ( -u b  <  -u a  ->  ( F `  -u b
)  <  ( F `  -u a ) ) )
1941933expb 1152 . . . . . . . . 9  |-  ( (
ph  /\  ( -u a  e.  NN0  /\  -u b  e.  NN0 ) )  -> 
( -u b  <  -u a  ->  ( F `  -u b
)  <  ( F `  -u a ) ) )
195194adantlr 695 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  -u b  e.  NN0 ) )  -> 
( -u b  <  -u a  ->  ( F `  -u b
)  <  ( F `  -u a ) ) )
196 negeq 9131 . . . . . . . . . . . . . . 15  |-  ( x  =  b  ->  -u x  =  -u b )
197196fveq2d 5609 . . . . . . . . . . . . . 14  |-  ( x  =  b  ->  ( F `  -u x )  =  ( F `  -u b ) )
19845negeqd 9133 . . . . . . . . . . . . . 14  |-  ( x  =  b  ->  -u ( F `  x )  =  -u ( F `  b ) )
199197, 198eqeq12d 2372 . . . . . . . . . . . . 13  |-  ( x  =  b  ->  (
( F `  -u x
)  =  -u ( F `  x )  <->  ( F `  -u b
)  =  -u ( F `  b )
) )
20044, 199imbi12d 311 . . . . . . . . . . . 12  |-  ( x  =  b  ->  (
( ( ph  /\  x  e.  ZZ )  ->  ( F `  -u x
)  =  -u ( F `  x )
)  <->  ( ( ph  /\  b  e.  ZZ )  ->  ( F `  -u b )  =  -u ( F `  b ) ) ) )
201200, 75chvarv 2018 . . . . . . . . . . 11  |-  ( (
ph  /\  b  e.  ZZ )  ->  ( F `
 -u b )  = 
-u ( F `  b ) )
202201adantrl 696 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( F `  -u b
)  =  -u ( F `  b )
)
203202adantr 451 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  -u b  e.  NN0 ) )  -> 
( F `  -u b
)  =  -u ( F `  b )
)
204128adantr 451 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  -u b  e.  NN0 ) )  -> 
( F `  -u a
)  =  -u ( F `  a )
)
205203, 204breq12d 4115 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  -u b  e.  NN0 ) )  -> 
( ( F `  -u b )  <  ( F `  -u a )  <->  -u ( F `  b
)  <  -u ( F `
 a ) ) )
206195, 205sylibd 205 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  -u b  e.  NN0 ) )  -> 
( -u b  <  -u a  -> 
-u ( F `  b )  <  -u ( F `  a )
) )
207 zre 10117 . . . . . . . . . 10  |-  ( a  e.  ZZ  ->  a  e.  RR )
208207ad2antrl 708 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
a  e.  RR )
209208adantr 451 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  -u b  e.  NN0 ) )  -> 
a  e.  RR )
210157ad2antlr 707 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  -u b  e.  NN0 ) )  -> 
b  e.  RR )
211209, 210ltnegd 9437 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  -u b  e.  NN0 ) )  -> 
( a  <  b  <->  -u b  <  -u a
) )
21239adantr 451 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  -u b  e.  NN0 ) )  -> 
( F `  a
)  e.  RR )
21349adantr 451 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  -u b  e.  NN0 ) )  -> 
( F `  b
)  e.  RR )
214212, 213ltnegd 9437 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  -u b  e.  NN0 ) )  -> 
( ( F `  a )  <  ( F `  b )  <->  -u ( F `  b
)  <  -u ( F `
 a ) ) )
215206, 211, 2143imtr4d 259 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  /\  ( -u a  e.  NN0  /\  -u b  e.  NN0 ) )  -> 
( a  <  b  ->  ( F `  a
)  <  ( F `  b ) ) )
216215ex 423 . . . . 5  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( -u a  e.  NN0  /\  -u b  e.  NN0 )  ->  (
a  <  b  ->  ( F `  a )  <  ( F `  b ) ) ) )
21738, 154, 179, 216ccased 913 . . . 4  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( ( a  e.  NN  \/  -u a  e.  NN0 )  /\  (
b  e.  NN  \/  -u b  e.  NN0 )
)  ->  ( a  <  b  ->  ( F `  a )  <  ( F `  b )
) ) )
21817, 217mpd 14 . . 3  |-  ( (
ph  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( a  <  b  ->  ( F `  a
)  <  ( F `  b ) ) )
2191, 2, 3, 4, 11, 218ltord1 9386 . 2  |-  ( (
ph  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  -> 
( A  <  B  <->  ( F `  A )  <  ( F `  B ) ) )
2202193impb 1147 1  |-  ( (
ph  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  < 
B  <->  ( F `  A )  <  ( F `  B )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710   class class class wbr 4102   ` cfv 5334   CCcc 8822   RRcr 8823   0cc0 8824   1c1 8825    < clt 8954    <_ cle 8955   -ucneg 9125   NNcn 9833   NN0cn0 10054   ZZcz 10113
This theorem is referenced by:  monotoddzz  26351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-resscn 8881  ax-1cn 8882  ax-icn 8883  ax-addcl 8884  ax-addrcl 8885  ax-mulcl 8886  ax-mulrcl 8887  ax-mulcom 8888  ax-addass 8889  ax-mulass 8890  ax-distr 8891  ax-i2m1 8892  ax-1ne0 8893  ax-1rid 8894  ax-rnegex 8895  ax-rrecex 8896  ax-cnre 8897  ax-pre-lttri 8898  ax-pre-lttrn 8899  ax-pre-ltadd 8900  ax-pre-mulgt0 8901
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-riota 6388  df-recs 6472  df-rdg 6507  df-er 6744  df-en 6949  df-dom 6950  df-sdom 6951  df-pnf 8956  df-mnf 8957  df-xr 8958  df-ltxr 8959  df-le 8960  df-sub 9126  df-neg 9127  df-nn 9834  df-n0 10055  df-z 10114
  Copyright terms: Public domain W3C validator