Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  moop2 Structured version   Unicode version

Theorem moop2 4454
 Description: "At most one" property of an ordered pair. (Contributed by NM, 11-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
moop2.1
Assertion
Ref Expression
moop2
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem moop2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eqtr2 2456 . . . 4
2 moop2.1 . . . . . 6
3 vex 2961 . . . . . 6
42, 3opth 4438 . . . . 5
54simprbi 452 . . . 4
61, 5syl 16 . . 3
76gen2 1557 . 2
8 nfcsb1v 3285 . . . . 5
9 nfcv 2574 . . . . 5
108, 9nfop 4002 . . . 4
1110nfeq2 2585 . . 3
12 csbeq1a 3261 . . . . 5
13 id 21 . . . . 5
1412, 13opeq12d 3994 . . . 4
1514eqeq2d 2449 . . 3
1611, 15mo4f 2315 . 2
177, 16mpbir 202 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360  wal 1550   wceq 1653   wcel 1726  wmo 2284  cvv 2958  csb 3253  cop 3819 This theorem is referenced by:  euop2  4459 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825
 Copyright terms: Public domain W3C validator