MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mooran2 Unicode version

Theorem mooran2 2198
Description: "At most one" exports disjunction to conjunction. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
mooran2  |-  ( E* x ( ph  \/  ps )  ->  ( E* x ph  /\  E* x ps ) )

Proof of Theorem mooran2
StepHypRef Expression
1 moor 2196 . 2  |-  ( E* x ( ph  \/  ps )  ->  E* x ph )
2 olc 373 . . 3  |-  ( ps 
->  ( ph  \/  ps ) )
32moimi 2190 . 2  |-  ( E* x ( ph  \/  ps )  ->  E* x ps )
41, 3jca 518 1  |-  ( E* x ( ph  \/  ps )  ->  ( E* x ph  /\  E* x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358   E*wmo 2144
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148
  Copyright terms: Public domain W3C validator