MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mooran2 Structured version   Unicode version

Theorem mooran2 2337
Description: "At most one" exports disjunction to conjunction. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
mooran2  |-  ( E* x ( ph  \/  ps )  ->  ( E* x ph  /\  E* x ps ) )

Proof of Theorem mooran2
StepHypRef Expression
1 moor 2335 . 2  |-  ( E* x ( ph  \/  ps )  ->  E* x ph )
2 olc 375 . . 3  |-  ( ps 
->  ( ph  \/  ps ) )
32moimi 2329 . 2  |-  ( E* x ( ph  \/  ps )  ->  E* x ps )
41, 3jca 520 1  |-  ( E* x ( ph  \/  ps )  ->  ( E* x ph  /\  E* x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 359    /\ wa 360   E*wmo 2283
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287
  Copyright terms: Public domain W3C validator