MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mopnval Unicode version

Theorem mopnval 18429
Description: An open set is a subset of a metric space which includes a ball around each of its points. Definition 1.3-2 of [Kreyszig] p. 18. The object  ( MetOpen `  D
) is the family of all open sets in the metric space determined by the metric  D. By mopntop 18431, the open sets of a metric space form a topology 
J, whose base set is 
U. J by mopnuni 18432. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Hypothesis
Ref Expression
mopnval.1  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
mopnval  |-  ( D  e.  ( * Met `  X )  ->  J  =  ( topGen `  ran  ( ball `  D )
) )

Proof of Theorem mopnval
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 fvssunirn 5721 . . 3  |-  ( * Met `  X ) 
C_  U. ran  * Met
21sseli 3312 . 2  |-  ( D  e.  ( * Met `  X )  ->  D  e.  U. ran  * Met )
3 mopnval.1 . . 3  |-  J  =  ( MetOpen `  D )
4 fveq2 5695 . . . . . 6  |-  ( d  =  D  ->  ( ball `  d )  =  ( ball `  D
) )
54rneqd 5064 . . . . 5  |-  ( d  =  D  ->  ran  ( ball `  d )  =  ran  ( ball `  D
) )
65fveq2d 5699 . . . 4  |-  ( d  =  D  ->  ( topGen `
 ran  ( ball `  d ) )  =  ( topGen `  ran  ( ball `  D ) ) )
7 df-mopn 16661 . . . 4  |-  MetOpen  =  ( d  e.  U. ran  * Met  |->  ( topGen `  ran  ( ball `  d )
) )
8 fvex 5709 . . . 4  |-  ( topGen ` 
ran  ( ball `  D
) )  e.  _V
96, 7, 8fvmpt 5773 . . 3  |-  ( D  e.  U. ran  * Met  ->  ( MetOpen `  D
)  =  ( topGen ` 
ran  ( ball `  D
) ) )
103, 9syl5eq 2456 . 2  |-  ( D  e.  U. ran  * Met  ->  J  =  (
topGen `  ran  ( ball `  D ) ) )
112, 10syl 16 1  |-  ( D  e.  ( * Met `  X )  ->  J  =  ( topGen `  ran  ( ball `  D )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1721   U.cuni 3983   ran crn 4846   ` cfv 5421   topGenctg 13628   * Metcxmt 16649   ballcbl 16651   MetOpencmopn 16654
This theorem is referenced by:  mopntopon  18430  elmopn  18433  imasf1oxms  18480  blssopn  18486  metss  18499  prdsxmslem2  18520  metcnp3  18531  metutopOLD  18573  xmetutop  18575  tgioo  18788  ismtyhmeolem  26411
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-sbc 3130  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-iota 5385  df-fun 5423  df-fv 5429  df-mopn 16661
  Copyright terms: Public domain W3C validator