MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mosubopt Structured version   Unicode version

Theorem mosubopt 4454
Description: "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-Aug-2007.)
Assertion
Ref Expression
mosubopt  |-  ( A. y A. z E* x ph  ->  E* x E. y E. z ( A  =  <. y ,  z
>.  /\  ph ) )
Distinct variable group:    x, y, z, A
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem mosubopt
StepHypRef Expression
1 nfa1 1806 . . 3  |-  F/ y A. y A. z E* x ph
2 nfe1 1747 . . . 4  |-  F/ y E. y E. z
( A  =  <. y ,  z >.  /\  ph )
32nfmo 2298 . . 3  |-  F/ y E* x E. y E. z ( A  = 
<. y ,  z >.  /\  ph )
4 nfa1 1806 . . . . 5  |-  F/ z A. z E* x ph
5 nfe1 1747 . . . . . . 7  |-  F/ z E. z ( A  =  <. y ,  z
>.  /\  ph )
65nfex 1865 . . . . . 6  |-  F/ z E. y E. z
( A  =  <. y ,  z >.  /\  ph )
76nfmo 2298 . . . . 5  |-  F/ z E* x E. y E. z ( A  = 
<. y ,  z >.  /\  ph )
8 copsexg 4442 . . . . . . . 8  |-  ( A  =  <. y ,  z
>.  ->  ( ph  <->  E. y E. z ( A  = 
<. y ,  z >.  /\  ph ) ) )
98mobidv 2316 . . . . . . 7  |-  ( A  =  <. y ,  z
>.  ->  ( E* x ph 
<->  E* x E. y E. z ( A  = 
<. y ,  z >.  /\  ph ) ) )
109biimpcd 216 . . . . . 6  |-  ( E* x ph  ->  ( A  =  <. y ,  z >.  ->  E* x E. y E. z ( A  =  <. y ,  z >.  /\  ph ) ) )
1110sps 1770 . . . . 5  |-  ( A. z E* x ph  ->  ( A  =  <. y ,  z >.  ->  E* x E. y E. z
( A  =  <. y ,  z >.  /\  ph ) ) )
124, 7, 11exlimd 1824 . . . 4  |-  ( A. z E* x ph  ->  ( E. z  A  = 
<. y ,  z >.  ->  E* x E. y E. z ( A  = 
<. y ,  z >.  /\  ph ) ) )
1312sps 1770 . . 3  |-  ( A. y A. z E* x ph  ->  ( E. z  A  =  <. y ,  z >.  ->  E* x E. y E. z ( A  =  <. y ,  z >.  /\  ph ) ) )
141, 3, 13exlimd 1824 . 2  |-  ( A. y A. z E* x ph  ->  ( E. y E. z  A  =  <. y ,  z >.  ->  E* x E. y E. z ( A  = 
<. y ,  z >.  /\  ph ) ) )
15 simpl 444 . . . . . 6  |-  ( ( A  =  <. y ,  z >.  /\  ph )  ->  A  =  <. y ,  z >. )
16152eximi 1586 . . . . 5  |-  ( E. y E. z ( A  =  <. y ,  z >.  /\  ph )  ->  E. y E. z  A  =  <. y ,  z >. )
1716exlimiv 1644 . . . 4  |-  ( E. x E. y E. z ( A  = 
<. y ,  z >.  /\  ph )  ->  E. y E. z  A  =  <. y ,  z >.
)
1817con3i 129 . . 3  |-  ( -. 
E. y E. z  A  =  <. y ,  z >.  ->  -.  E. x E. y E. z
( A  =  <. y ,  z >.  /\  ph ) )
19 exmo 2326 . . . 4  |-  ( E. x E. y E. z ( A  = 
<. y ,  z >.  /\  ph )  \/  E* x E. y E. z
( A  =  <. y ,  z >.  /\  ph ) )
2019ori 365 . . 3  |-  ( -. 
E. x E. y E. z ( A  = 
<. y ,  z >.  /\  ph )  ->  E* x E. y E. z
( A  =  <. y ,  z >.  /\  ph ) )
2118, 20syl 16 . 2  |-  ( -. 
E. y E. z  A  =  <. y ,  z >.  ->  E* x E. y E. z ( A  =  <. y ,  z >.  /\  ph ) )
2214, 21pm2.61d1 153 1  |-  ( A. y A. z E* x ph  ->  E* x E. y E. z ( A  =  <. y ,  z
>.  /\  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359   A.wal 1549   E.wex 1550    = wceq 1652   E*wmo 2282   <.cop 3817
This theorem is referenced by:  mosubop  4455  funoprabg  6169
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823
  Copyright terms: Public domain W3C validator