Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  moxfr Unicode version

Theorem moxfr 26855
Description: Transfer at-most-one between related expressions. (Contributed by Stefan O'Rear, 12-Feb-2015.)
Hypotheses
Ref Expression
moxfr.a  |-  A  e. 
_V
moxfr.b  |-  E! y  x  =  A
moxfr.c  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
moxfr  |-  ( E* x ph  <->  E* y ps )
Distinct variable groups:    ps, x    ph, y    x, A    x, y
Allowed substitution hints:    ph( x)    ps( y)    A( y)

Proof of Theorem moxfr
StepHypRef Expression
1 moxfr.a . . . . . 6  |-  A  e. 
_V
21a1i 10 . . . . 5  |-  ( y  e.  _V  ->  A  e.  _V )
3 moxfr.b . . . . . . . 8  |-  E! y  x  =  A
4 euex 2179 . . . . . . . 8  |-  ( E! y  x  =  A  ->  E. y  x  =  A )
53, 4ax-mp 8 . . . . . . 7  |-  E. y  x  =  A
6 rexv 2815 . . . . . . 7  |-  ( E. y  e.  _V  x  =  A  <->  E. y  x  =  A )
75, 6mpbir 200 . . . . . 6  |-  E. y  e.  _V  x  =  A
87a1i 10 . . . . 5  |-  ( x  e.  _V  ->  E. y  e.  _V  x  =  A )
9 moxfr.c . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
102, 8, 9rexxfr 4570 . . . 4  |-  ( E. x  e.  _V  ph  <->  E. y  e.  _V  ps )
11 rexv 2815 . . . 4  |-  ( E. x  e.  _V  ph  <->  E. x ph )
12 rexv 2815 . . . 4  |-  ( E. y  e.  _V  ps  <->  E. y ps )
1310, 11, 123bitr3i 266 . . 3  |-  ( E. x ph  <->  E. y ps )
141, 3, 9euxfr 2964 . . 3  |-  ( E! x ph  <->  E! y ps )
1513, 14imbi12i 316 . 2  |-  ( ( E. x ph  ->  E! x ph )  <->  ( E. y ps  ->  E! y ps ) )
16 df-mo 2161 . 2  |-  ( E* x ph  <->  ( E. x ph  ->  E! x ph ) )
17 df-mo 2161 . 2  |-  ( E* y ps  <->  ( E. y ps  ->  E! y ps ) )
1815, 16, 173bitr4i 268 1  |-  ( E* x ph  <->  E* y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   E.wex 1531    = wceq 1632    e. wcel 1696   E!weu 2156   E*wmo 2157   E.wrex 2557   _Vcvv 2801
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-v 2803
  Copyright terms: Public domain W3C validator