MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp3anl1 Unicode version

Theorem mp3anl1 1271
Description: An inference based on modus ponens. (Contributed by NM, 24-Feb-2005.)
Hypotheses
Ref Expression
mp3anl1.1  |-  ph
mp3anl1.2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ta )
Assertion
Ref Expression
mp3anl1  |-  ( ( ( ps  /\  ch )  /\  th )  ->  ta )

Proof of Theorem mp3anl1
StepHypRef Expression
1 mp3anl1.1 . . 3  |-  ph
2 mp3anl1.2 . . . 4  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ta )
32ex 423 . . 3  |-  ( (
ph  /\  ps  /\  ch )  ->  ( th  ->  ta ) )
41, 3mp3an1 1264 . 2  |-  ( ( ps  /\  ch )  ->  ( th  ->  ta ) )
54imp 418 1  |-  ( ( ( ps  /\  ch )  /\  th )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934
This theorem is referenced by:  mp3anr1  1274  facavg  11330  iddvds  12558  blometi  21397  mdslmd3i  22928  atcvat2i  22983  chirredlem3  22988  mdsymlem1  22999  flfneicn  25728
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator