Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mp4anOLD Unicode version

Theorem mp4anOLD 26336
Description: An inference based on modus ponens. (Moved to mp4an 654 in main set.mm and may be deleted by mathbox owner, JM. --NM 19-Oct-2012.) (Contributed by Jeff Madsen, 15-Jun-2010.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
mp4an.1OLD  |-  ph
mp4an.2OLD  |-  ps
mp4an.3OLD  |-  ch
mp4an.4OLD  |-  th
mp4an.5OLD  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  th ) )  ->  ta )
Assertion
Ref Expression
mp4anOLD  |-  ta

Proof of Theorem mp4anOLD
StepHypRef Expression
1 mp4an.1OLD . 2  |-  ph
2 mp4an.2OLD . 2  |-  ps
3 mp4an.3OLD . 2  |-  ch
4 mp4an.4OLD . 2  |-  th
5 mp4an.5OLD . 2  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  th ) )  ->  ta )
61, 2, 3, 4, 5mp4an 654 1  |-  ta
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator