Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpaaeu Unicode version

Theorem mpaaeu 27458
Description: An algebraic number has exactly one monic polynomial of the least degree. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Assertion
Ref Expression
mpaaeu  |-  ( A  e.  AA  ->  E! p  e.  (Poly `  QQ ) ( (deg `  p )  =  (degAA `  A )  /\  (
p `  A )  =  0  /\  (
(coeff `  p ) `  (degAA `  A ) )  =  1 ) )
Distinct variable group:    A, p

Proof of Theorem mpaaeu
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dgraalem 27453 . . . 4  |-  ( A  e.  AA  ->  (
(degAA `
 A )  e.  NN  /\  E. a  e.  ( (Poly `  QQ )  \  { 0 p } ) ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) ) )
21simprd 449 . . 3  |-  ( A  e.  AA  ->  E. a  e.  ( (Poly `  QQ )  \  { 0 p } ) ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )
3 qsscn 10343 . . . . . . . 8  |-  QQ  C_  CC
4 eldifi 3311 . . . . . . . . . . . 12  |-  ( a  e.  ( (Poly `  QQ )  \  { 0 p } )  -> 
a  e.  (Poly `  QQ ) )
54ad2antlr 707 . . . . . . . . . . 11  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  a  e.  (Poly `  QQ ) )
6 zssq 10339 . . . . . . . . . . . 12  |-  ZZ  C_  QQ
7 0z 10051 . . . . . . . . . . . 12  |-  0  e.  ZZ
86, 7sselii 3190 . . . . . . . . . . 11  |-  0  e.  QQ
9 eqid 2296 . . . . . . . . . . . 12  |-  (coeff `  a )  =  (coeff `  a )
109coef2 19629 . . . . . . . . . . 11  |-  ( ( a  e.  (Poly `  QQ )  /\  0  e.  QQ )  ->  (coeff `  a ) : NN0 --> QQ )
115, 8, 10sylancl 643 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  (coeff `  a
) : NN0 --> QQ )
12 dgrcl 19631 . . . . . . . . . . 11  |-  ( a  e.  (Poly `  QQ )  ->  (deg `  a
)  e.  NN0 )
135, 12syl 15 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  (deg `  a
)  e.  NN0 )
14 ffvelrn 5679 . . . . . . . . . 10  |-  ( ( (coeff `  a ) : NN0 --> QQ  /\  (deg `  a )  e.  NN0 )  ->  ( (coeff `  a ) `  (deg `  a ) )  e.  QQ )
1511, 13, 14syl2anc 642 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( (coeff `  a ) `  (deg `  a ) )  e.  QQ )
16 eldifsni 3763 . . . . . . . . . . 11  |-  ( a  e.  ( (Poly `  QQ )  \  { 0 p } )  -> 
a  =/=  0 p )
1716ad2antlr 707 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  a  =/=  0 p )
18 eqid 2296 . . . . . . . . . . . . 13  |-  (deg `  a )  =  (deg
`  a )
1918, 9dgreq0 19662 . . . . . . . . . . . 12  |-  ( a  e.  (Poly `  QQ )  ->  ( a  =  0 p  <->  ( (coeff `  a ) `  (deg `  a ) )  =  0 ) )
2019necon3bid 2494 . . . . . . . . . . 11  |-  ( a  e.  (Poly `  QQ )  ->  ( a  =/=  0 p  <->  ( (coeff `  a ) `  (deg `  a ) )  =/=  0 ) )
215, 20syl 15 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( a  =/=  0 p  <->  ( (coeff `  a ) `  (deg `  a ) )  =/=  0 ) )
2217, 21mpbid 201 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( (coeff `  a ) `  (deg `  a ) )  =/=  0 )
23 qreccl 10352 . . . . . . . . 9  |-  ( ( ( (coeff `  a
) `  (deg `  a
) )  e.  QQ  /\  ( (coeff `  a
) `  (deg `  a
) )  =/=  0
)  ->  ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) )  e.  QQ )
2415, 22, 23syl2anc 642 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) )  e.  QQ )
25 plyconst 19604 . . . . . . . 8  |-  ( ( QQ  C_  CC  /\  (
1  /  ( (coeff `  a ) `  (deg `  a ) ) )  e.  QQ )  -> 
( CC  X.  {
( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) } )  e.  (Poly `  QQ ) )
263, 24, 25sylancr 644 . . . . . . 7  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( CC  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  e.  (Poly `  QQ ) )
27 simpl 443 . . . . . . . 8  |-  ( ( ( CC  X.  {
( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) } )  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ ) )  -> 
( CC  X.  {
( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) } )  e.  (Poly `  QQ ) )
28 simpr 447 . . . . . . . 8  |-  ( ( ( CC  X.  {
( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) } )  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ ) )  -> 
a  e.  (Poly `  QQ ) )
29 qaddcl 10348 . . . . . . . . 9  |-  ( ( b  e.  QQ  /\  c  e.  QQ )  ->  ( b  +  c )  e.  QQ )
3029adantl 452 . . . . . . . 8  |-  ( ( ( ( CC  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  /\  ( b  e.  QQ  /\  c  e.  QQ ) )  -> 
( b  +  c )  e.  QQ )
31 qmulcl 10350 . . . . . . . . 9  |-  ( ( b  e.  QQ  /\  c  e.  QQ )  ->  ( b  x.  c
)  e.  QQ )
3231adantl 452 . . . . . . . 8  |-  ( ( ( ( CC  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  /\  ( b  e.  QQ  /\  c  e.  QQ ) )  -> 
( b  x.  c
)  e.  QQ )
3327, 28, 30, 32plymul 19616 . . . . . . 7  |-  ( ( ( CC  X.  {
( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) } )  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ ) )  -> 
( ( CC  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  o F  x.  a )  e.  (Poly `  QQ ) )
3426, 5, 33syl2anc 642 . . . . . 6  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( ( CC  X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  o F  x.  a )  e.  (Poly `  QQ )
)
359coef3 19630 . . . . . . . . . . 11  |-  ( a  e.  (Poly `  QQ )  ->  (coeff `  a
) : NN0 --> CC )
365, 35syl 15 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  (coeff `  a
) : NN0 --> CC )
37 ffvelrn 5679 . . . . . . . . . 10  |-  ( ( (coeff `  a ) : NN0 --> CC  /\  (deg `  a )  e.  NN0 )  ->  ( (coeff `  a ) `  (deg `  a ) )  e.  CC )
3836, 13, 37syl2anc 642 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( (coeff `  a ) `  (deg `  a ) )  e.  CC )
3938, 22reccld 9545 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) )  e.  CC )
4038, 22recne0d 9546 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) )  =/=  0 )
41 dgrmulc 19668 . . . . . . . 8  |-  ( ( ( 1  /  (
(coeff `  a ) `  (deg `  a )
) )  e.  CC  /\  ( 1  /  (
(coeff `  a ) `  (deg `  a )
) )  =/=  0  /\  a  e.  (Poly `  QQ ) )  -> 
(deg `  ( ( CC  X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  o F  x.  a ) )  =  (deg `  a
) )
4239, 40, 5, 41syl3anc 1182 . . . . . . 7  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  (deg `  (
( CC  X.  {
( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) } )  o F  x.  a
) )  =  (deg
`  a ) )
43 simprl 732 . . . . . . 7  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  (deg `  a
)  =  (degAA `  A
) )
4442, 43eqtrd 2328 . . . . . 6  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  (deg `  (
( CC  X.  {
( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) } )  o F  x.  a
) )  =  (degAA `  A ) )
45 aacn 19713 . . . . . . . . 9  |-  ( A  e.  AA  ->  A  e.  CC )
4645ad2antrr 706 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  A  e.  CC )
47 ovex 5899 . . . . . . . . . 10  |-  ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) )  e.  _V
48 fnconstg 5445 . . . . . . . . . 10  |-  ( ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) )  e.  _V  ->  ( CC  X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  Fn  CC )
4947, 48mp1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( CC  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  Fn  CC )
50 plyf 19596 . . . . . . . . . 10  |-  ( a  e.  (Poly `  QQ )  ->  a : CC --> CC )
51 ffn 5405 . . . . . . . . . 10  |-  ( a : CC --> CC  ->  a  Fn  CC )
525, 50, 513syl 18 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  a  Fn  CC )
53 cnex 8834 . . . . . . . . . 10  |-  CC  e.  _V
5453a1i 10 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  CC  e.  _V )
55 inidm 3391 . . . . . . . . 9  |-  ( CC 
i^i  CC )  =  CC
5647fvconst2 5745 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
( CC  X.  {
( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) } ) `
 A )  =  ( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) )
5756adantl 452 . . . . . . . . 9  |-  ( ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  { 0 p } ) )  /\  ( (deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  /\  A  e.  CC )  ->  (
( CC  X.  {
( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) } ) `
 A )  =  ( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) )
58 simplrr 737 . . . . . . . . 9  |-  ( ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  { 0 p } ) )  /\  ( (deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  /\  A  e.  CC )  ->  (
a `  A )  =  0 )
5949, 52, 54, 54, 55, 57, 58ofval 6103 . . . . . . . 8  |-  ( ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  { 0 p } ) )  /\  ( (deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  /\  A  e.  CC )  ->  (
( ( CC  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  o F  x.  a ) `  A
)  =  ( ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) )  x.  0 ) )
6046, 59mpdan 649 . . . . . . 7  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( (
( CC  X.  {
( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) } )  o F  x.  a
) `  A )  =  ( ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) )  x.  0 ) )
6139mul01d 9027 . . . . . . 7  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( (
1  /  ( (coeff `  a ) `  (deg `  a ) ) )  x.  0 )  =  0 )
6260, 61eqtrd 2328 . . . . . 6  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( (
( CC  X.  {
( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) } )  o F  x.  a
) `  A )  =  0 )
63 coemulc 19652 . . . . . . . . 9  |-  ( ( ( 1  /  (
(coeff `  a ) `  (deg `  a )
) )  e.  CC  /\  a  e.  (Poly `  QQ ) )  ->  (coeff `  ( ( CC  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  o F  x.  a ) )  =  ( ( NN0  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  o F  x.  (coeff `  a ) ) )
6439, 5, 63syl2anc 642 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  (coeff `  (
( CC  X.  {
( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) } )  o F  x.  a
) )  =  ( ( NN0  X.  {
( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) } )  o F  x.  (coeff `  a ) ) )
6564fveq1d 5543 . . . . . . 7  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( (coeff `  ( ( CC  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  o F  x.  a ) ) `  (degAA `  A ) )  =  ( ( ( NN0 
X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  o F  x.  (coeff `  a
) ) `  (degAA `  A ) ) )
66 dgraacl 27454 . . . . . . . . . 10  |-  ( A  e.  AA  ->  (degAA `  A )  e.  NN )
6766ad2antrr 706 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  (degAA `  A
)  e.  NN )
6867nnnn0d 10034 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  (degAA `  A
)  e.  NN0 )
69 fnconstg 5445 . . . . . . . . . 10  |-  ( ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) )  e.  _V  ->  ( NN0  X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  Fn  NN0 )
7047, 69mp1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( NN0  X. 
{ ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  Fn  NN0 )
71 ffn 5405 . . . . . . . . . 10  |-  ( (coeff `  a ) : NN0 --> CC 
->  (coeff `  a )  Fn  NN0 )
7236, 71syl 15 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  (coeff `  a
)  Fn  NN0 )
73 nn0ex 9987 . . . . . . . . . 10  |-  NN0  e.  _V
7473a1i 10 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  NN0  e.  _V )
75 inidm 3391 . . . . . . . . 9  |-  ( NN0 
i^i  NN0 )  =  NN0
7647fvconst2 5745 . . . . . . . . . 10  |-  ( (degAA `  A )  e.  NN0  ->  ( ( NN0  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } ) `  (degAA `  A
) )  =  ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) )
7776adantl 452 . . . . . . . . 9  |-  ( ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  { 0 p } ) )  /\  ( (deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  /\  (degAA `  A
)  e.  NN0 )  ->  ( ( NN0  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } ) `  (degAA `  A
) )  =  ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) )
78 simplrl 736 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  { 0 p } ) )  /\  ( (deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  /\  (degAA `  A
)  e.  NN0 )  ->  (deg `  a )  =  (degAA `  A ) )
7978eqcomd 2301 . . . . . . . . . 10  |-  ( ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  { 0 p } ) )  /\  ( (deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  /\  (degAA `  A
)  e.  NN0 )  ->  (degAA `  A )  =  (deg `  a )
)
8079fveq2d 5545 . . . . . . . . 9  |-  ( ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  { 0 p } ) )  /\  ( (deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  /\  (degAA `  A
)  e.  NN0 )  ->  ( (coeff `  a
) `  (degAA `  A
) )  =  ( (coeff `  a ) `  (deg `  a )
) )
8170, 72, 74, 74, 75, 77, 80ofval 6103 . . . . . . . 8  |-  ( ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  { 0 p } ) )  /\  ( (deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  /\  (degAA `  A
)  e.  NN0 )  ->  ( ( ( NN0 
X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  o F  x.  (coeff `  a
) ) `  (degAA `  A ) )  =  ( ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) )  x.  ( (coeff `  a
) `  (deg `  a
) ) ) )
8268, 81mpdan 649 . . . . . . 7  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( (
( NN0  X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  o F  x.  (coeff `  a
) ) `  (degAA `  A ) )  =  ( ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) )  x.  ( (coeff `  a
) `  (deg `  a
) ) ) )
8338, 22recid2d 9548 . . . . . . 7  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( (
1  /  ( (coeff `  a ) `  (deg `  a ) ) )  x.  ( (coeff `  a ) `  (deg `  a ) ) )  =  1 )
8465, 82, 833eqtrd 2332 . . . . . 6  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( (coeff `  ( ( CC  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  o F  x.  a ) ) `  (degAA `  A ) )  =  1 )
85 fveq2 5541 . . . . . . . . 9  |-  ( p  =  ( ( CC 
X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  o F  x.  a )  -> 
(deg `  p )  =  (deg `  ( ( CC  X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  o F  x.  a ) ) )
8685eqeq1d 2304 . . . . . . . 8  |-  ( p  =  ( ( CC 
X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  o F  x.  a )  -> 
( (deg `  p
)  =  (degAA `  A
)  <->  (deg `  ( ( CC  X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  o F  x.  a ) )  =  (degAA `  A ) ) )
87 fveq1 5540 . . . . . . . . 9  |-  ( p  =  ( ( CC 
X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  o F  x.  a )  -> 
( p `  A
)  =  ( ( ( CC  X.  {
( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) } )  o F  x.  a
) `  A )
)
8887eqeq1d 2304 . . . . . . . 8  |-  ( p  =  ( ( CC 
X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  o F  x.  a )  -> 
( ( p `  A )  =  0  <-> 
( ( ( CC 
X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  o F  x.  a ) `  A )  =  0 ) )
89 fveq2 5541 . . . . . . . . . 10  |-  ( p  =  ( ( CC 
X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  o F  x.  a )  -> 
(coeff `  p )  =  (coeff `  ( ( CC  X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  o F  x.  a ) ) )
9089fveq1d 5543 . . . . . . . . 9  |-  ( p  =  ( ( CC 
X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  o F  x.  a )  -> 
( (coeff `  p
) `  (degAA `  A
) )  =  ( (coeff `  ( ( CC  X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  o F  x.  a ) ) `
 (degAA `  A ) ) )
9190eqeq1d 2304 . . . . . . . 8  |-  ( p  =  ( ( CC 
X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  o F  x.  a )  -> 
( ( (coeff `  p ) `  (degAA `  A ) )  =  1  <->  ( (coeff `  ( ( CC  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  o F  x.  a ) ) `  (degAA `  A ) )  =  1 ) )
9286, 88, 913anbi123d 1252 . . . . . . 7  |-  ( p  =  ( ( CC 
X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  o F  x.  a )  -> 
( ( (deg `  p )  =  (degAA `  A )  /\  (
p `  A )  =  0  /\  (
(coeff `  p ) `  (degAA `  A ) )  =  1 )  <->  ( (deg `  ( ( CC  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  o F  x.  a ) )  =  (degAA `  A )  /\  ( ( ( CC 
X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  o F  x.  a ) `  A )  =  0  /\  ( (coeff `  ( ( CC  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  o F  x.  a ) ) `  (degAA `  A ) )  =  1 ) ) )
9392rspcev 2897 . . . . . 6  |-  ( ( ( ( CC  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  o F  x.  a )  e.  (Poly `  QQ )  /\  (
(deg `  ( ( CC  X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  o F  x.  a ) )  =  (degAA `  A )  /\  ( ( ( CC 
X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  o F  x.  a ) `  A )  =  0  /\  ( (coeff `  ( ( CC  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  o F  x.  a ) ) `  (degAA `  A ) )  =  1 ) )  ->  E. p  e.  (Poly `  QQ ) ( (deg
`  p )  =  (degAA `  A )  /\  ( p `  A
)  =  0  /\  ( (coeff `  p
) `  (degAA `  A
) )  =  1 ) )
9434, 44, 62, 84, 93syl13anc 1184 . . . . 5  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  E. p  e.  (Poly `  QQ )
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 ) )
9594ex 423 . . . 4  |-  ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0 p } ) )  ->  ( (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 )  ->  E. p  e.  (Poly `  QQ ) ( (deg
`  p )  =  (degAA `  A )  /\  ( p `  A
)  =  0  /\  ( (coeff `  p
) `  (degAA `  A
) )  =  1 ) ) )
9695rexlimdva 2680 . . 3  |-  ( A  e.  AA  ->  ( E. a  e.  (
(Poly `  QQ )  \  { 0 p }
) ( (deg `  a )  =  (degAA `  A )  /\  (
a `  A )  =  0 )  ->  E. p  e.  (Poly `  QQ ) ( (deg
`  p )  =  (degAA `  A )  /\  ( p `  A
)  =  0  /\  ( (coeff `  p
) `  (degAA `  A
) )  =  1 ) ) )
972, 96mpd 14 . 2  |-  ( A  e.  AA  ->  E. p  e.  (Poly `  QQ )
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 ) )
98 simp2 956 . . . . . . . . . . 11  |-  ( ( (deg `  p )  =  (degAA `  A )  /\  ( p `  A
)  =  0  /\  ( (coeff `  p
) `  (degAA `  A
) )  =  1 )  ->  ( p `  A )  =  0 )
99 simp2 956 . . . . . . . . . . 11  |-  ( ( (deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 )  ->  ( a `  A )  =  0 )
10098, 99anim12i 549 . . . . . . . . . 10  |-  ( ( ( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) )  ->  (
( p `  A
)  =  0  /\  ( a `  A
)  =  0 ) )
101 plyf 19596 . . . . . . . . . . . . . . . 16  |-  ( p  e.  (Poly `  QQ )  ->  p : CC --> CC )
102 ffn 5405 . . . . . . . . . . . . . . . 16  |-  ( p : CC --> CC  ->  p  Fn  CC )
103101, 102syl 15 . . . . . . . . . . . . . . 15  |-  ( p  e.  (Poly `  QQ )  ->  p  Fn  CC )
104103ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  /\  ( (
p `  A )  =  0  /\  (
a `  A )  =  0 ) )  ->  p  Fn  CC )
10550, 51syl 15 . . . . . . . . . . . . . . 15  |-  ( a  e.  (Poly `  QQ )  ->  a  Fn  CC )
106105ad2antlr 707 . . . . . . . . . . . . . 14  |-  ( ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  /\  ( (
p `  A )  =  0  /\  (
a `  A )  =  0 ) )  ->  a  Fn  CC )
10753a1i 10 . . . . . . . . . . . . . 14  |-  ( ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  /\  ( (
p `  A )  =  0  /\  (
a `  A )  =  0 ) )  ->  CC  e.  _V )
108 simplrl 736 . . . . . . . . . . . . . 14  |-  ( ( ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ ) )  /\  ( ( p `  A )  =  0  /\  ( a `  A )  =  0 ) )  /\  A  e.  CC )  ->  (
p `  A )  =  0 )
109 simplrr 737 . . . . . . . . . . . . . 14  |-  ( ( ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ ) )  /\  ( ( p `  A )  =  0  /\  ( a `  A )  =  0 ) )  /\  A  e.  CC )  ->  (
a `  A )  =  0 )
110104, 106, 107, 107, 55, 108, 109ofval 6103 . . . . . . . . . . . . 13  |-  ( ( ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ ) )  /\  ( ( p `  A )  =  0  /\  ( a `  A )  =  0 ) )  /\  A  e.  CC )  ->  (
( p  o F  -  a ) `  A )  =  ( 0  -  0 ) )
11145, 110sylan2 460 . . . . . . . . . . . 12  |-  ( ( ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ ) )  /\  ( ( p `  A )  =  0  /\  ( a `  A )  =  0 ) )  /\  A  e.  AA )  ->  (
( p  o F  -  a ) `  A )  =  ( 0  -  0 ) )
112 0cn 8847 . . . . . . . . . . . . 13  |-  0  e.  CC
113112subid1i 9134 . . . . . . . . . . . 12  |-  ( 0  -  0 )  =  0
114111, 113syl6eq 2344 . . . . . . . . . . 11  |-  ( ( ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ ) )  /\  ( ( p `  A )  =  0  /\  ( a `  A )  =  0 ) )  /\  A  e.  AA )  ->  (
( p  o F  -  a ) `  A )  =  0 )
115114ex 423 . . . . . . . . . 10  |-  ( ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  /\  ( (
p `  A )  =  0  /\  (
a `  A )  =  0 ) )  ->  ( A  e.  AA  ->  ( (
p  o F  -  a ) `  A
)  =  0 ) )
116100, 115sylan2 460 . . . . . . . . 9  |-  ( ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  /\  ( (
(deg `  p )  =  (degAA `  A )  /\  ( p `  A
)  =  0  /\  ( (coeff `  p
) `  (degAA `  A
) )  =  1 )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
( A  e.  AA  ->  ( ( p  o F  -  a ) `
 A )  =  0 ) )
117116com12 27 . . . . . . . 8  |-  ( A  e.  AA  ->  (
( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ ) )  /\  ( ( (deg `  p )  =  (degAA `  A )  /\  (
p `  A )  =  0  /\  (
(coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  ( (deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
( ( p  o F  -  a ) `
 A )  =  0 ) )
118117impl 603 . . . . . . 7  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
( ( p  o F  -  a ) `
 A )  =  0 )
119 simpll 730 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  ->  A  e.  AA )
120 simpl 443 . . . . . . . . . 10  |-  ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  ->  p  e.  (Poly `  QQ ) )
121 simpr 447 . . . . . . . . . 10  |-  ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  ->  a  e.  (Poly `  QQ ) )
12229adantl 452 . . . . . . . . . 10  |-  ( ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  /\  ( b  e.  QQ  /\  c  e.  QQ ) )  -> 
( b  +  c )  e.  QQ )
12331adantl 452 . . . . . . . . . 10  |-  ( ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  /\  ( b  e.  QQ  /\  c  e.  QQ ) )  -> 
( b  x.  c
)  e.  QQ )
124 1z 10069 . . . . . . . . . . . 12  |-  1  e.  ZZ
125 zq 10338 . . . . . . . . . . . 12  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
126 qnegcl 10349 . . . . . . . . . . . 12  |-  ( 1  e.  QQ  ->  -u 1  e.  QQ )
127124, 125, 126mp2b 9 . . . . . . . . . . 11  |-  -u 1  e.  QQ
128127a1i 10 . . . . . . . . . 10  |-  ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  ->  -u 1  e.  QQ )
129120, 121, 122, 123, 128plysub 19617 . . . . . . . . 9  |-  ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  ->  ( p  o F  -  a
)  e.  (Poly `  QQ ) )
130129ad2antlr 707 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
( p  o F  -  a )  e.  (Poly `  QQ )
)
131 simplrl 736 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  ->  p  e.  (Poly `  QQ ) )
132 simplrr 737 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
a  e.  (Poly `  QQ ) )
133 simprr1 1003 . . . . . . . . . . 11  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
(deg `  a )  =  (degAA `  A ) )
134 simprl1 1000 . . . . . . . . . . 11  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
(deg `  p )  =  (degAA `  A ) )
135133, 134eqtr4d 2331 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
(deg `  a )  =  (deg `  p )
)
13666ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
(degAA `
 A )  e.  NN )
137134, 136eqeltrd 2370 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
(deg `  p )  e.  NN )
138 simprl3 1002 . . . . . . . . . . 11  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
( (coeff `  p
) `  (degAA `  A
) )  =  1 )
139134fveq2d 5545 . . . . . . . . . . 11  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
( (coeff `  p
) `  (deg `  p
) )  =  ( (coeff `  p ) `  (degAA `  A ) ) )
140134fveq2d 5545 . . . . . . . . . . . 12  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
( (coeff `  a
) `  (deg `  p
) )  =  ( (coeff `  a ) `  (degAA `  A ) ) )
141 simprr3 1005 . . . . . . . . . . . 12  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
( (coeff `  a
) `  (degAA `  A
) )  =  1 )
142140, 141eqtrd 2328 . . . . . . . . . . 11  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
( (coeff `  a
) `  (deg `  p
) )  =  1 )
143138, 139, 1423eqtr4d 2338 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
( (coeff `  p
) `  (deg `  p
) )  =  ( (coeff `  a ) `  (deg `  p )
) )
144 eqid 2296 . . . . . . . . . . 11  |-  (deg `  p )  =  (deg
`  p )
145144dgrsub2 27442 . . . . . . . . . 10  |-  ( ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  /\  ( (deg `  a )  =  (deg
`  p )  /\  (deg `  p )  e.  NN  /\  ( (coeff `  p ) `  (deg `  p ) )  =  ( (coeff `  a
) `  (deg `  p
) ) ) )  ->  (deg `  (
p  o F  -  a ) )  < 
(deg `  p )
)
146131, 132, 135, 137, 143, 145syl23anc 1189 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
(deg `  ( p  o F  -  a
) )  <  (deg `  p ) )
147146, 134breqtrd 4063 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
(deg `  ( p  o F  -  a
) )  <  (degAA `  A ) )
148 dgraa0p 27457 . . . . . . . 8  |-  ( ( A  e.  AA  /\  ( p  o F  -  a )  e.  (Poly `  QQ )  /\  (deg `  ( p  o F  -  a
) )  <  (degAA `  A ) )  -> 
( ( ( p  o F  -  a
) `  A )  =  0  <->  ( p  o F  -  a
)  =  0 p ) )
149119, 130, 147, 148syl3anc 1182 . . . . . . 7  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
( ( ( p  o F  -  a
) `  A )  =  0  <->  ( p  o F  -  a
)  =  0 p ) )
150118, 149mpbid 201 . . . . . 6  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
( p  o F  -  a )  =  0 p )
151 df-0p 19041 . . . . . 6  |-  0 p  =  ( CC  X.  { 0 } )
152150, 151syl6eq 2344 . . . . 5  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
( p  o F  -  a )  =  ( CC  X.  {
0 } ) )
153 ofsubeq0 9759 . . . . . . . 8  |-  ( ( CC  e.  _V  /\  p : CC --> CC  /\  a : CC --> CC )  ->  ( ( p  o F  -  a
)  =  ( CC 
X.  { 0 } )  <->  p  =  a
) )
15453, 153mp3an1 1264 . . . . . . 7  |-  ( ( p : CC --> CC  /\  a : CC --> CC )  ->  ( ( p  o F  -  a
)  =  ( CC 
X.  { 0 } )  <->  p  =  a
) )
155101, 50, 154syl2an 463 . . . . . 6  |-  ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  ->  ( (
p  o F  -  a )  =  ( CC  X.  { 0 } )  <->  p  =  a ) )
156155ad2antlr 707 . . . . 5  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
( ( p  o F  -  a )  =  ( CC  X.  { 0 } )  <-> 
p  =  a ) )
157152, 156mpbid 201 . . . 4  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  ->  p  =  a )
158157ex 423 . . 3  |-  ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  ->  (
( ( (deg `  p )  =  (degAA `  A )  /\  (
p `  A )  =  0  /\  (
(coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  ( (deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) )  ->  p  =  a ) )
159158ralrimivva 2648 . 2  |-  ( A  e.  AA  ->  A. p  e.  (Poly `  QQ ) A. a  e.  (Poly `  QQ ) ( ( ( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) )  ->  p  =  a ) )
160 fveq2 5541 . . . . 5  |-  ( p  =  a  ->  (deg `  p )  =  (deg
`  a ) )
161160eqeq1d 2304 . . . 4  |-  ( p  =  a  ->  (
(deg `  p )  =  (degAA `  A )  <->  (deg `  a
)  =  (degAA `  A
) ) )
162 fveq1 5540 . . . . 5  |-  ( p  =  a  ->  (
p `  A )  =  ( a `  A ) )
163162eqeq1d 2304 . . . 4  |-  ( p  =  a  ->  (
( p `  A
)  =  0  <->  (
a `  A )  =  0 ) )
164 fveq2 5541 . . . . . 6  |-  ( p  =  a  ->  (coeff `  p )  =  (coeff `  a ) )
165164fveq1d 5543 . . . . 5  |-  ( p  =  a  ->  (
(coeff `  p ) `  (degAA `  A ) )  =  ( (coeff `  a ) `  (degAA `  A ) ) )
166165eqeq1d 2304 . . . 4  |-  ( p  =  a  ->  (
( (coeff `  p
) `  (degAA `  A
) )  =  1  <-> 
( (coeff `  a
) `  (degAA `  A
) )  =  1 ) )
167161, 163, 1663anbi123d 1252 . . 3  |-  ( p  =  a  ->  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  <->  ( (deg `  a )  =  (degAA `  A )  /\  (
a `  A )  =  0  /\  (
(coeff `  a ) `  (degAA `  A ) )  =  1 ) ) )
168167reu4 2972 . 2  |-  ( E! p  e.  (Poly `  QQ ) ( (deg `  p )  =  (degAA `  A )  /\  (
p `  A )  =  0  /\  (
(coeff `  p ) `  (degAA `  A ) )  =  1 )  <->  ( E. p  e.  (Poly `  QQ ) ( (deg `  p )  =  (degAA `  A )  /\  (
p `  A )  =  0  /\  (
(coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  A. p  e.  (Poly `  QQ ) A. a  e.  (Poly `  QQ )
( ( ( (deg
`  p )  =  (degAA `  A )  /\  ( p `  A
)  =  0  /\  ( (coeff `  p
) `  (degAA `  A
) )  =  1 )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) )  ->  p  =  a ) ) )
16997, 159, 168sylanbrc 645 1  |-  ( A  e.  AA  ->  E! p  e.  (Poly `  QQ ) ( (deg `  p )  =  (degAA `  A )  /\  (
p `  A )  =  0  /\  (
(coeff `  p ) `  (degAA `  A ) )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   E!wreu 2558   _Vcvv 2801    \ cdif 3162    C_ wss 3165   {csn 3653   class class class wbr 4039    X. cxp 4703    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874    o Fcof 6092   CCcc 8751   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    < clt 8883    - cmin 9053   -ucneg 9054    / cdiv 9439   NNcn 9762   NN0cn0 9981   ZZcz 10040   QQcq 10332   0 pc0p 19040  Polycply 19582  coeffccoe 19584  degcdgr 19585   AAcaa 19710  degAAcdgraa 27448
This theorem is referenced by:  mpaalem  27460
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-rlim 11979  df-sum 12175  df-0p 19041  df-ply 19586  df-coe 19588  df-dgr 19589  df-aa 19711  df-dgraa 27450
  Copyright terms: Public domain W3C validator