MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpanlr1 Structured version   Unicode version

Theorem mpanlr1 669
Description: An inference based on modus ponens. (Contributed by NM, 30-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
Hypotheses
Ref Expression
mpanlr1.1  |-  ps
mpanlr1.2  |-  ( ( ( ph  /\  ( ps  /\  ch ) )  /\  th )  ->  ta )
Assertion
Ref Expression
mpanlr1  |-  ( ( ( ph  /\  ch )  /\  th )  ->  ta )

Proof of Theorem mpanlr1
StepHypRef Expression
1 mpanlr1.1 . . 3  |-  ps
21jctl 527 . 2  |-  ( ch 
->  ( ps  /\  ch ) )
3 mpanlr1.2 . 2  |-  ( ( ( ph  /\  ( ps  /\  ch ) )  /\  th )  ->  ta )
42, 3sylanl2 634 1  |-  ( ( ( ph  /\  ch )  /\  th )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360
This theorem is referenced by:  oecl  6810  omass  6852  oen0  6858  oeordi  6859  oewordri  6864  oeworde  6865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179  df-an 362
  Copyright terms: Public domain W3C validator