MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpbidi Unicode version

Theorem mpbidi 207
Description: A deduction from a biconditional, related to modus ponens. (Contributed by NM, 9-Aug-1994.)
Hypotheses
Ref Expression
mpbidi.min  |-  ( th 
->  ( ph  ->  ps ) )
mpbidi.maj  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
mpbidi  |-  ( th 
->  ( ph  ->  ch ) )

Proof of Theorem mpbidi
StepHypRef Expression
1 mpbidi.min . 2  |-  ( th 
->  ( ph  ->  ps ) )
2 mpbidi.maj . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
32biimpd 198 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
41, 3sylcom 25 1  |-  ( th 
->  ( ph  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176
This theorem is referenced by:  tpid3g  3754  ralxfr2d  4566  ovmpt4g  5986  ov3  6000  tfrlem5  6412  omeulem2  6597  domtriomlem  8084  nsmallnq  8617  bposlem1  20539  pntrsumbnd  20731
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177
  Copyright terms: Public domain W3C validator