MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpbidi Structured version   Unicode version

Theorem mpbidi 208
Description: A deduction from a biconditional, related to modus ponens. (Contributed by NM, 9-Aug-1994.)
Hypotheses
Ref Expression
mpbidi.min  |-  ( th 
->  ( ph  ->  ps ) )
mpbidi.maj  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
mpbidi  |-  ( th 
->  ( ph  ->  ch ) )

Proof of Theorem mpbidi
StepHypRef Expression
1 mpbidi.min . 2  |-  ( th 
->  ( ph  ->  ps ) )
2 mpbidi.maj . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
32biimpd 199 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
41, 3sylcom 27 1  |-  ( th 
->  ( ph  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177
This theorem is referenced by:  tpid3g  3919  ralxfr2d  4739  ovmpt4g  6196  ov3  6210  tfrlem5  6641  omeulem2  6826  domtriomlem  8322  nsmallnq  8854  bposlem1  21068  pntrsumbnd  21260
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178
  Copyright terms: Public domain W3C validator