MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpff Unicode version

Theorem mpff 19829
Description: Polynomial functions are functions. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
mpfaddcl.q  |-  Q  =  ran  ( ( I evalSub  S ) `  R
)
mpff.b  |-  B  =  ( Base `  S
)
Assertion
Ref Expression
mpff  |-  ( F  e.  Q  ->  F : ( B  ^m  I ) --> B )

Proof of Theorem mpff
StepHypRef Expression
1 mpff.b . . . . 5  |-  B  =  ( Base `  S
)
21eqcomi 2391 . . . 4  |-  ( Base `  S )  =  B
32oveq1i 6030 . . 3  |-  ( (
Base `  S )  ^m  I )  =  ( B  ^m  I )
43oveq2i 6031 . 2  |-  ( S  ^s  ( ( Base `  S
)  ^m  I )
)  =  ( S  ^s  ( B  ^m  I
) )
5 eqid 2387 . 2  |-  ( Base `  ( S  ^s  ( (
Base `  S )  ^m  I ) ) )  =  ( Base `  ( S  ^s  ( ( Base `  S
)  ^m  I )
) )
6 mpfaddcl.q . . . 4  |-  Q  =  ran  ( ( I evalSub  S ) `  R
)
76mpfrcl 19806 . . 3  |-  ( F  e.  Q  ->  (
I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
) )
87simp2d 970 . 2  |-  ( F  e.  Q  ->  S  e.  CRing )
9 ovex 6045 . . 3  |-  ( B  ^m  I )  e. 
_V
109a1i 11 . 2  |-  ( F  e.  Q  ->  ( B  ^m  I )  e. 
_V )
116mpfsubrg 19828 . . . 4  |-  ( ( I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  Q  e.  (SubRing `  ( S  ^s  (
( Base `  S )  ^m  I ) ) ) )
125subrgss 15796 . . . 4  |-  ( Q  e.  (SubRing `  ( S  ^s  ( ( Base `  S
)  ^m  I )
) )  ->  Q  C_  ( Base `  ( S  ^s  ( ( Base `  S
)  ^m  I )
) ) )
137, 11, 123syl 19 . . 3  |-  ( F  e.  Q  ->  Q  C_  ( Base `  ( S  ^s  ( ( Base `  S
)  ^m  I )
) ) )
14 id 20 . . 3  |-  ( F  e.  Q  ->  F  e.  Q )
1513, 14sseldd 3292 . 2  |-  ( F  e.  Q  ->  F  e.  ( Base `  ( S  ^s  ( ( Base `  S
)  ^m  I )
) ) )
164, 1, 5, 8, 10, 15pwselbas 13638 1  |-  ( F  e.  Q  ->  F : ( B  ^m  I ) --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1649    e. wcel 1717   _Vcvv 2899    C_ wss 3263   ran crn 4819   -->wf 5390   ` cfv 5394  (class class class)co 6020    ^m cmap 6954   Basecbs 13396    ^s cpws 13597   CRingccrg 15588  SubRingcsubrg 15791   evalSub ces 16336
This theorem is referenced by:  pf1ind  19842
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-ofr 6245  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-2o 6661  df-oadd 6664  df-er 6841  df-map 6956  df-pm 6957  df-ixp 7000  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-sup 7381  df-oi 7412  df-card 7759  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-7 9995  df-8 9996  df-9 9997  df-10 9998  df-n0 10154  df-z 10215  df-dec 10315  df-uz 10421  df-fz 10976  df-fzo 11066  df-seq 11251  df-hash 11546  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-mulr 13470  df-sca 13472  df-vsca 13473  df-tset 13475  df-ple 13476  df-ds 13478  df-hom 13480  df-cco 13481  df-prds 13598  df-pws 13600  df-0g 13654  df-gsum 13655  df-mre 13738  df-mrc 13739  df-acs 13741  df-mnd 14617  df-mhm 14665  df-submnd 14666  df-grp 14739  df-minusg 14740  df-sbg 14741  df-mulg 14742  df-subg 14868  df-ghm 14931  df-cntz 15043  df-cmn 15341  df-abl 15342  df-mgp 15576  df-rng 15590  df-cring 15591  df-ur 15592  df-rnghom 15746  df-subrg 15793  df-lmod 15879  df-lss 15936  df-lsp 15975  df-assa 16299  df-asp 16300  df-ascl 16301  df-psr 16344  df-mvr 16345  df-mpl 16346  df-evls 16347
  Copyright terms: Public domain W3C validator