MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpfind Unicode version

Theorem mpfind 19428
Description: Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
mpfind.cb  |-  B  =  ( Base `  S
)
mpfind.cp  |-  .+  =  ( +g  `  S )
mpfind.ct  |-  .x.  =  ( .r `  S )
mpfind.cq  |-  Q  =  ran  ( ( I evalSub  S ) `  R
)
mpfind.ad  |-  ( (
ph  /\  ( (
f  e.  Q  /\  ta )  /\  (
g  e.  Q  /\  et ) ) )  ->  ze )
mpfind.mu  |-  ( (
ph  /\  ( (
f  e.  Q  /\  ta )  /\  (
g  e.  Q  /\  et ) ) )  ->  si )
mpfind.wa  |-  ( x  =  ( ( B  ^m  I )  X. 
{ f } )  ->  ( ps  <->  ch )
)
mpfind.wb  |-  ( x  =  ( g  e.  ( B  ^m  I
)  |->  ( g `  f ) )  -> 
( ps  <->  th )
)
mpfind.wc  |-  ( x  =  f  ->  ( ps 
<->  ta ) )
mpfind.wd  |-  ( x  =  g  ->  ( ps 
<->  et ) )
mpfind.we  |-  ( x  =  ( f  o F  .+  g )  ->  ( ps  <->  ze )
)
mpfind.wf  |-  ( x  =  ( f  o F  .x.  g )  ->  ( ps  <->  si )
)
mpfind.wg  |-  ( x  =  A  ->  ( ps 
<->  rh ) )
mpfind.co  |-  ( (
ph  /\  f  e.  R )  ->  ch )
mpfind.pr  |-  ( (
ph  /\  f  e.  I )  ->  th )
mpfind.a  |-  ( ph  ->  A  e.  Q )
Assertion
Ref Expression
mpfind  |-  ( ph  ->  rh )
Distinct variable groups:    ch, x    et, x    ph, f, g    ps, f, g    rh, x    si, x    ta, x    th, x    ze, x    x, A    B, f, g, x   
f, I, g, x    .+ , f, g, x    Q, f, g    R, f, g    S, f, g    .x. , f,
g, x
Allowed substitution hints:    ph( x)    ps( x)    ch( f, g)    th( f,
g)    ta( f, g)    et( f, g)    ze( f, g)    si( f, g)    rh( f,
g)    A( f, g)    Q( x)    R( x)    S( x)

Proof of Theorem mpfind
Dummy variables  i 
j  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpfind.a . . . . 5  |-  ( ph  ->  A  e.  Q )
2 mpfind.cq . . . . 5  |-  Q  =  ran  ( ( I evalSub  S ) `  R
)
31, 2syl6eleq 2373 . . . 4  |-  ( ph  ->  A  e.  ran  (
( I evalSub  S ) `  R ) )
42mpfrcl 19402 . . . . . . . . 9  |-  ( A  e.  Q  ->  (
I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
) )
51, 4syl 15 . . . . . . . 8  |-  ( ph  ->  ( I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
) )
6 eqid 2283 . . . . . . . . 9  |-  ( ( I evalSub  S ) `  R
)  =  ( ( I evalSub  S ) `  R
)
7 eqid 2283 . . . . . . . . 9  |-  ( I mPoly 
( Ss  R ) )  =  ( I mPoly  ( Ss  R ) )
8 eqid 2283 . . . . . . . . 9  |-  ( Ss  R )  =  ( Ss  R )
9 eqid 2283 . . . . . . . . 9  |-  ( S  ^s  ( B  ^m  I
) )  =  ( S  ^s  ( B  ^m  I
) )
10 mpfind.cb . . . . . . . . 9  |-  B  =  ( Base `  S
)
116, 7, 8, 9, 10evlsrhm 19405 . . . . . . . 8  |-  ( ( I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( (
I evalSub  S ) `  R
)  e.  ( ( I mPoly  ( Ss  R ) ) RingHom  ( S  ^s  ( B  ^m  I ) ) ) )
125, 11syl 15 . . . . . . 7  |-  ( ph  ->  ( ( I evalSub  S
) `  R )  e.  ( ( I mPoly  ( Ss  R ) ) RingHom  ( S  ^s  ( B  ^m  I
) ) ) )
13 eqid 2283 . . . . . . . 8  |-  ( Base `  ( I mPoly  ( Ss  R ) ) )  =  ( Base `  (
I mPoly  ( Ss  R ) ) )
14 eqid 2283 . . . . . . . 8  |-  ( Base `  ( S  ^s  ( B  ^m  I ) ) )  =  ( Base `  ( S  ^s  ( B  ^m  I ) ) )
1513, 14rhmf 15504 . . . . . . 7  |-  ( ( ( I evalSub  S ) `
 R )  e.  ( ( I mPoly  ( Ss  R ) ) RingHom  ( S  ^s  ( B  ^m  I
) ) )  -> 
( ( I evalSub  S
) `  R ) : ( Base `  (
I mPoly  ( Ss  R ) ) ) --> ( Base `  ( S  ^s  ( B  ^m  I ) ) ) )
1612, 15syl 15 . . . . . 6  |-  ( ph  ->  ( ( I evalSub  S
) `  R ) : ( Base `  (
I mPoly  ( Ss  R ) ) ) --> ( Base `  ( S  ^s  ( B  ^m  I ) ) ) )
17 ffn 5389 . . . . . 6  |-  ( ( ( I evalSub  S ) `
 R ) : ( Base `  (
I mPoly  ( Ss  R ) ) ) --> ( Base `  ( S  ^s  ( B  ^m  I ) ) )  ->  ( (
I evalSub  S ) `  R
)  Fn  ( Base `  ( I mPoly  ( Ss  R ) ) ) )
1816, 17syl 15 . . . . 5  |-  ( ph  ->  ( ( I evalSub  S
) `  R )  Fn  ( Base `  (
I mPoly  ( Ss  R ) ) ) )
19 fvelrnb 5570 . . . . 5  |-  ( ( ( I evalSub  S ) `
 R )  Fn  ( Base `  (
I mPoly  ( Ss  R ) ) )  ->  ( A  e.  ran  ( ( I evalSub  S ) `  R
)  <->  E. y  e.  (
Base `  ( I mPoly  ( Ss  R ) ) ) ( ( ( I evalSub  S ) `  R
) `  y )  =  A ) )
2018, 19syl 15 . . . 4  |-  ( ph  ->  ( A  e.  ran  ( ( I evalSub  S
) `  R )  <->  E. y  e.  ( Base `  ( I mPoly  ( Ss  R ) ) ) ( ( ( I evalSub  S
) `  R ) `  y )  =  A ) )
213, 20mpbid 201 . . 3  |-  ( ph  ->  E. y  e.  (
Base `  ( I mPoly  ( Ss  R ) ) ) ( ( ( I evalSub  S ) `  R
) `  y )  =  A )
22 ffun 5391 . . . . . . . 8  |-  ( ( ( I evalSub  S ) `
 R ) : ( Base `  (
I mPoly  ( Ss  R ) ) ) --> ( Base `  ( S  ^s  ( B  ^m  I ) ) )  ->  Fun  ( ( I evalSub  S ) `  R
) )
2316, 22syl 15 . . . . . . 7  |-  ( ph  ->  Fun  ( ( I evalSub  S ) `  R
) )
2423adantr 451 . . . . . 6  |-  ( (
ph  /\  y  e.  ( Base `  ( I mPoly  ( Ss  R ) ) ) )  ->  Fun  ( ( I evalSub  S ) `  R
) )
25 eqid 2283 . . . . . . 7  |-  ( Base `  ( Ss  R ) )  =  ( Base `  ( Ss  R ) )
26 eqid 2283 . . . . . . 7  |-  ( I mVar  ( Ss  R ) )  =  ( I mVar  ( Ss  R ) )
27 eqid 2283 . . . . . . 7  |-  ( +g  `  ( I mPoly  ( Ss  R ) ) )  =  ( +g  `  (
I mPoly  ( Ss  R ) ) )
28 eqid 2283 . . . . . . 7  |-  ( .r
`  ( I mPoly  ( Ss  R ) ) )  =  ( .r `  ( I mPoly  ( Ss  R
) ) )
29 eqid 2283 . . . . . . 7  |-  (algSc `  ( I mPoly  ( Ss  R
) ) )  =  (algSc `  ( I mPoly  ( Ss  R ) ) )
305simp1d 967 . . . . . . . . . . . 12  |-  ( ph  ->  I  e.  _V )
315simp2d 968 . . . . . . . . . . . . . 14  |-  ( ph  ->  S  e.  CRing )
325simp3d 969 . . . . . . . . . . . . . 14  |-  ( ph  ->  R  e.  (SubRing `  S
) )
338subrgcrng 15549 . . . . . . . . . . . . . 14  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( Ss  R
)  e.  CRing )
3431, 32, 33syl2anc 642 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Ss  R )  e.  CRing )
35 crngrng 15351 . . . . . . . . . . . . 13  |-  ( ( Ss  R )  e.  CRing  -> 
( Ss  R )  e.  Ring )
3634, 35syl 15 . . . . . . . . . . . 12  |-  ( ph  ->  ( Ss  R )  e.  Ring )
377mplrng 16196 . . . . . . . . . . . 12  |-  ( ( I  e.  _V  /\  ( Ss  R )  e.  Ring )  ->  ( I mPoly  ( Ss  R ) )  e. 
Ring )
3830, 36, 37syl2anc 642 . . . . . . . . . . 11  |-  ( ph  ->  ( I mPoly  ( Ss  R ) )  e.  Ring )
3938adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( I mPoly  ( Ss  R ) )  e. 
Ring )
40 simprl 732 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } ) )
41 elpreima 5645 . . . . . . . . . . . . . 14  |-  ( ( ( I evalSub  S ) `
 R )  Fn  ( Base `  (
I mPoly  ( Ss  R ) ) )  ->  (
i  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } )  <->  ( i  e.  ( Base `  (
I mPoly  ( Ss  R ) ) )  /\  (
( ( I evalSub  S
) `  R ) `  i )  e.  {
x  |  ps }
) ) )
4218, 41syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  <->  ( i  e.  ( Base `  (
I mPoly  ( Ss  R ) ) )  /\  (
( ( I evalSub  S
) `  R ) `  i )  e.  {
x  |  ps }
) ) )
4342adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  <->  ( i  e.  ( Base `  (
I mPoly  ( Ss  R ) ) )  /\  (
( ( I evalSub  S
) `  R ) `  i )  e.  {
x  |  ps }
) ) )
4440, 43mpbid 201 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( i  e.  ( Base `  (
I mPoly  ( Ss  R ) ) )  /\  (
( ( I evalSub  S
) `  R ) `  i )  e.  {
x  |  ps }
) )
4544simpld 445 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  i  e.  (
Base `  ( I mPoly  ( Ss  R ) ) ) )
46 simprr 733 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  j  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } ) )
47 elpreima 5645 . . . . . . . . . . . . . 14  |-  ( ( ( I evalSub  S ) `
 R )  Fn  ( Base `  (
I mPoly  ( Ss  R ) ) )  ->  (
j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } )  <->  ( j  e.  ( Base `  (
I mPoly  ( Ss  R ) ) )  /\  (
( ( I evalSub  S
) `  R ) `  j )  e.  {
x  |  ps }
) ) )
4818, 47syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  ( j  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  <->  ( j  e.  ( Base `  (
I mPoly  ( Ss  R ) ) )  /\  (
( ( I evalSub  S
) `  R ) `  j )  e.  {
x  |  ps }
) ) )
4948adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( j  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  <->  ( j  e.  ( Base `  (
I mPoly  ( Ss  R ) ) )  /\  (
( ( I evalSub  S
) `  R ) `  j )  e.  {
x  |  ps }
) ) )
5046, 49mpbid 201 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( j  e.  ( Base `  (
I mPoly  ( Ss  R ) ) )  /\  (
( ( I evalSub  S
) `  R ) `  j )  e.  {
x  |  ps }
) )
5150simpld 445 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  j  e.  (
Base `  ( I mPoly  ( Ss  R ) ) ) )
5213, 27rngacl 15368 . . . . . . . . . 10  |-  ( ( ( I mPoly  ( Ss  R ) )  e.  Ring  /\  i  e.  ( Base `  ( I mPoly  ( Ss  R ) ) )  /\  j  e.  ( Base `  ( I mPoly  ( Ss  R ) ) ) )  ->  ( i ( +g  `  ( I mPoly 
( Ss  R ) ) ) j )  e.  (
Base `  ( I mPoly  ( Ss  R ) ) ) )
5339, 45, 51, 52syl3anc 1182 . . . . . . . . 9  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( i ( +g  `  ( I mPoly 
( Ss  R ) ) ) j )  e.  (
Base `  ( I mPoly  ( Ss  R ) ) ) )
54 rhmghm 15503 . . . . . . . . . . . . . 14  |-  ( ( ( I evalSub  S ) `
 R )  e.  ( ( I mPoly  ( Ss  R ) ) RingHom  ( S  ^s  ( B  ^m  I
) ) )  -> 
( ( I evalSub  S
) `  R )  e.  ( ( I mPoly  ( Ss  R ) )  GrpHom  ( S  ^s  ( B  ^m  I
) ) ) )
5512, 54syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( I evalSub  S
) `  R )  e.  ( ( I mPoly  ( Ss  R ) )  GrpHom  ( S  ^s  ( B  ^m  I
) ) ) )
5655adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( ( I evalSub  S ) `  R
)  e.  ( ( I mPoly  ( Ss  R ) )  GrpHom  ( S  ^s  ( B  ^m  I ) ) ) )
57 eqid 2283 . . . . . . . . . . . . 13  |-  ( +g  `  ( S  ^s  ( B  ^m  I ) ) )  =  ( +g  `  ( S  ^s  ( B  ^m  I ) ) )
5813, 27, 57ghmlin 14688 . . . . . . . . . . . 12  |-  ( ( ( ( I evalSub  S
) `  R )  e.  ( ( I mPoly  ( Ss  R ) )  GrpHom  ( S  ^s  ( B  ^m  I
) ) )  /\  i  e.  ( Base `  ( I mPoly  ( Ss  R ) ) )  /\  j  e.  ( Base `  ( I mPoly  ( Ss  R ) ) ) )  ->  ( ( ( I evalSub  S ) `  R
) `  ( i
( +g  `  ( I mPoly 
( Ss  R ) ) ) j ) )  =  ( ( ( ( I evalSub  S ) `  R
) `  i )
( +g  `  ( S  ^s  ( B  ^m  I
) ) ) ( ( ( I evalSub  S
) `  R ) `  j ) ) )
5956, 45, 51, 58syl3anc 1182 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( ( ( I evalSub  S ) `  R
) `  ( i
( +g  `  ( I mPoly 
( Ss  R ) ) ) j ) )  =  ( ( ( ( I evalSub  S ) `  R
) `  i )
( +g  `  ( S  ^s  ( B  ^m  I
) ) ) ( ( ( I evalSub  S
) `  R ) `  j ) ) )
6031adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  S  e.  CRing )
61 ovex 5883 . . . . . . . . . . . . 13  |-  ( B  ^m  I )  e. 
_V
6261a1i 10 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( B  ^m  I )  e.  _V )
6316adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( ( I evalSub  S ) `  R
) : ( Base `  ( I mPoly  ( Ss  R ) ) ) --> (
Base `  ( S  ^s  ( B  ^m  I ) ) ) )
64 ffvelrn 5663 . . . . . . . . . . . . 13  |-  ( ( ( ( I evalSub  S
) `  R ) : ( Base `  (
I mPoly  ( Ss  R ) ) ) --> ( Base `  ( S  ^s  ( B  ^m  I ) ) )  /\  i  e.  ( Base `  (
I mPoly  ( Ss  R ) ) ) )  -> 
( ( ( I evalSub  S ) `  R
) `  i )  e.  ( Base `  ( S  ^s  ( B  ^m  I
) ) ) )
6563, 45, 64syl2anc 642 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( ( ( I evalSub  S ) `  R
) `  i )  e.  ( Base `  ( S  ^s  ( B  ^m  I
) ) ) )
66 ffvelrn 5663 . . . . . . . . . . . . 13  |-  ( ( ( ( I evalSub  S
) `  R ) : ( Base `  (
I mPoly  ( Ss  R ) ) ) --> ( Base `  ( S  ^s  ( B  ^m  I ) ) )  /\  j  e.  ( Base `  (
I mPoly  ( Ss  R ) ) ) )  -> 
( ( ( I evalSub  S ) `  R
) `  j )  e.  ( Base `  ( S  ^s  ( B  ^m  I
) ) ) )
6763, 51, 66syl2anc 642 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( ( ( I evalSub  S ) `  R
) `  j )  e.  ( Base `  ( S  ^s  ( B  ^m  I
) ) ) )
68 mpfind.cp . . . . . . . . . . . 12  |-  .+  =  ( +g  `  S )
699, 14, 60, 62, 65, 67, 68, 57pwsplusgval 13389 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( ( ( ( I evalSub  S ) `
 R ) `  i ) ( +g  `  ( S  ^s  ( B  ^m  I ) ) ) ( ( ( I evalSub  S ) `  R
) `  j )
)  =  ( ( ( ( I evalSub  S
) `  R ) `  i )  o F 
.+  ( ( ( I evalSub  S ) `  R
) `  j )
) )
7059, 69eqtrd 2315 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( ( ( I evalSub  S ) `  R
) `  ( i
( +g  `  ( I mPoly 
( Ss  R ) ) ) j ) )  =  ( ( ( ( I evalSub  S ) `  R
) `  i )  o F  .+  ( ( ( I evalSub  S ) `
 R ) `  j ) ) )
71 simpl 443 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ph )
7218adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( ( I evalSub  S ) `  R
)  Fn  ( Base `  ( I mPoly  ( Ss  R ) ) ) )
73 fnfvelrn 5662 . . . . . . . . . . . . . 14  |-  ( ( ( ( I evalSub  S
) `  R )  Fn  ( Base `  (
I mPoly  ( Ss  R ) ) )  /\  i  e.  ( Base `  (
I mPoly  ( Ss  R ) ) ) )  -> 
( ( ( I evalSub  S ) `  R
) `  i )  e.  ran  ( ( I evalSub  S ) `  R
) )
7472, 45, 73syl2anc 642 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( ( ( I evalSub  S ) `  R
) `  i )  e.  ran  ( ( I evalSub  S ) `  R
) )
7574, 2syl6eleqr 2374 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( ( ( I evalSub  S ) `  R
) `  i )  e.  Q )
7623adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  Fun  ( (
I evalSub  S ) `  R
) )
77 fvimacnvi 5639 . . . . . . . . . . . . 13  |-  ( ( Fun  ( ( I evalSub  S ) `  R
)  /\  i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } ) )  ->  ( ( ( I evalSub  S ) `  R
) `  i )  e.  { x  |  ps } )
7876, 40, 77syl2anc 642 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( ( ( I evalSub  S ) `  R
) `  i )  e.  { x  |  ps } )
7975, 78jca 518 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( ( ( ( I evalSub  S ) `
 R ) `  i )  e.  Q  /\  ( ( ( I evalSub  S ) `  R
) `  i )  e.  { x  |  ps } ) )
80 fnfvelrn 5662 . . . . . . . . . . . . . 14  |-  ( ( ( ( I evalSub  S
) `  R )  Fn  ( Base `  (
I mPoly  ( Ss  R ) ) )  /\  j  e.  ( Base `  (
I mPoly  ( Ss  R ) ) ) )  -> 
( ( ( I evalSub  S ) `  R
) `  j )  e.  ran  ( ( I evalSub  S ) `  R
) )
8172, 51, 80syl2anc 642 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( ( ( I evalSub  S ) `  R
) `  j )  e.  ran  ( ( I evalSub  S ) `  R
) )
8281, 2syl6eleqr 2374 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( ( ( I evalSub  S ) `  R
) `  j )  e.  Q )
83 fvimacnvi 5639 . . . . . . . . . . . . 13  |-  ( ( Fun  ( ( I evalSub  S ) `  R
)  /\  j  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } ) )  ->  ( ( ( I evalSub  S ) `  R
) `  j )  e.  { x  |  ps } )
8476, 46, 83syl2anc 642 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( ( ( I evalSub  S ) `  R
) `  j )  e.  { x  |  ps } )
8582, 84jca 518 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( ( ( ( I evalSub  S ) `
 R ) `  j )  e.  Q  /\  ( ( ( I evalSub  S ) `  R
) `  j )  e.  { x  |  ps } ) )
86 fvex 5539 . . . . . . . . . . . 12  |-  ( ( ( I evalSub  S ) `
 R ) `  i )  e.  _V
87 fvex 5539 . . . . . . . . . . . 12  |-  ( ( ( I evalSub  S ) `
 R ) `  j )  e.  _V
88 eleq1 2343 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( ( ( I evalSub  S ) `  R
) `  i )  ->  ( f  e.  Q  <->  ( ( ( I evalSub  S
) `  R ) `  i )  e.  Q
) )
89 vex 2791 . . . . . . . . . . . . . . . . . 18  |-  f  e. 
_V
90 mpfind.wc . . . . . . . . . . . . . . . . . 18  |-  ( x  =  f  ->  ( ps 
<->  ta ) )
9189, 90elab 2914 . . . . . . . . . . . . . . . . 17  |-  ( f  e.  { x  |  ps }  <->  ta )
92 eleq1 2343 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( ( ( I evalSub  S ) `  R
) `  i )  ->  ( f  e.  {
x  |  ps }  <->  ( ( ( I evalSub  S
) `  R ) `  i )  e.  {
x  |  ps }
) )
9391, 92syl5bbr 250 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( ( ( I evalSub  S ) `  R
) `  i )  ->  ( ta  <->  ( (
( I evalSub  S ) `  R ) `  i
)  e.  { x  |  ps } ) )
9488, 93anbi12d 691 . . . . . . . . . . . . . . 15  |-  ( f  =  ( ( ( I evalSub  S ) `  R
) `  i )  ->  ( ( f  e.  Q  /\  ta )  <->  ( ( ( ( I evalSub  S ) `  R
) `  i )  e.  Q  /\  (
( ( I evalSub  S
) `  R ) `  i )  e.  {
x  |  ps }
) ) )
95 eleq1 2343 . . . . . . . . . . . . . . . 16  |-  ( g  =  ( ( ( I evalSub  S ) `  R
) `  j )  ->  ( g  e.  Q  <->  ( ( ( I evalSub  S
) `  R ) `  j )  e.  Q
) )
96 vex 2791 . . . . . . . . . . . . . . . . . 18  |-  g  e. 
_V
97 mpfind.wd . . . . . . . . . . . . . . . . . 18  |-  ( x  =  g  ->  ( ps 
<->  et ) )
9896, 97elab 2914 . . . . . . . . . . . . . . . . 17  |-  ( g  e.  { x  |  ps }  <->  et )
99 eleq1 2343 . . . . . . . . . . . . . . . . 17  |-  ( g  =  ( ( ( I evalSub  S ) `  R
) `  j )  ->  ( g  e.  {
x  |  ps }  <->  ( ( ( I evalSub  S
) `  R ) `  j )  e.  {
x  |  ps }
) )
10098, 99syl5bbr 250 . . . . . . . . . . . . . . . 16  |-  ( g  =  ( ( ( I evalSub  S ) `  R
) `  j )  ->  ( et  <->  ( (
( I evalSub  S ) `  R ) `  j
)  e.  { x  |  ps } ) )
10195, 100anbi12d 691 . . . . . . . . . . . . . . 15  |-  ( g  =  ( ( ( I evalSub  S ) `  R
) `  j )  ->  ( ( g  e.  Q  /\  et )  <-> 
( ( ( ( I evalSub  S ) `  R
) `  j )  e.  Q  /\  (
( ( I evalSub  S
) `  R ) `  j )  e.  {
x  |  ps }
) ) )
10294, 101bi2anan9 843 . . . . . . . . . . . . . 14  |-  ( ( f  =  ( ( ( I evalSub  S ) `
 R ) `  i )  /\  g  =  ( ( ( I evalSub  S ) `  R
) `  j )
)  ->  ( (
( f  e.  Q  /\  ta )  /\  (
g  e.  Q  /\  et ) )  <->  ( (
( ( ( I evalSub  S ) `  R
) `  i )  e.  Q  /\  (
( ( I evalSub  S
) `  R ) `  i )  e.  {
x  |  ps }
)  /\  ( (
( ( I evalSub  S
) `  R ) `  j )  e.  Q  /\  ( ( ( I evalSub  S ) `  R
) `  j )  e.  { x  |  ps } ) ) ) )
103102anbi2d 684 . . . . . . . . . . . . 13  |-  ( ( f  =  ( ( ( I evalSub  S ) `
 R ) `  i )  /\  g  =  ( ( ( I evalSub  S ) `  R
) `  j )
)  ->  ( ( ph  /\  ( ( f  e.  Q  /\  ta )  /\  ( g  e.  Q  /\  et ) ) )  <->  ( ph  /\  ( ( ( ( ( I evalSub  S ) `
 R ) `  i )  e.  Q  /\  ( ( ( I evalSub  S ) `  R
) `  i )  e.  { x  |  ps } )  /\  (
( ( ( I evalSub  S ) `  R
) `  j )  e.  Q  /\  (
( ( I evalSub  S
) `  R ) `  j )  e.  {
x  |  ps }
) ) ) ) )
104 ovex 5883 . . . . . . . . . . . . . . 15  |-  ( f  o F  .+  g
)  e.  _V
105 mpfind.we . . . . . . . . . . . . . . 15  |-  ( x  =  ( f  o F  .+  g )  ->  ( ps  <->  ze )
)
106104, 105elab 2914 . . . . . . . . . . . . . 14  |-  ( ( f  o F  .+  g )  e.  {
x  |  ps }  <->  ze )
107 oveq12 5867 . . . . . . . . . . . . . . 15  |-  ( ( f  =  ( ( ( I evalSub  S ) `
 R ) `  i )  /\  g  =  ( ( ( I evalSub  S ) `  R
) `  j )
)  ->  ( f  o F  .+  g )  =  ( ( ( ( I evalSub  S ) `
 R ) `  i )  o F 
.+  ( ( ( I evalSub  S ) `  R
) `  j )
) )
108107eleq1d 2349 . . . . . . . . . . . . . 14  |-  ( ( f  =  ( ( ( I evalSub  S ) `
 R ) `  i )  /\  g  =  ( ( ( I evalSub  S ) `  R
) `  j )
)  ->  ( (
f  o F  .+  g )  e.  {
x  |  ps }  <->  ( ( ( ( I evalSub  S ) `  R
) `  i )  o F  .+  ( ( ( I evalSub  S ) `
 R ) `  j ) )  e. 
{ x  |  ps } ) )
109106, 108syl5bbr 250 . . . . . . . . . . . . 13  |-  ( ( f  =  ( ( ( I evalSub  S ) `
 R ) `  i )  /\  g  =  ( ( ( I evalSub  S ) `  R
) `  j )
)  ->  ( ze  <->  ( ( ( ( I evalSub  S ) `  R
) `  i )  o F  .+  ( ( ( I evalSub  S ) `
 R ) `  j ) )  e. 
{ x  |  ps } ) )
110103, 109imbi12d 311 . . . . . . . . . . . 12  |-  ( ( f  =  ( ( ( I evalSub  S ) `
 R ) `  i )  /\  g  =  ( ( ( I evalSub  S ) `  R
) `  j )
)  ->  ( (
( ph  /\  (
( f  e.  Q  /\  ta )  /\  (
g  e.  Q  /\  et ) ) )  ->  ze )  <->  ( ( ph  /\  ( ( ( ( ( I evalSub  S ) `
 R ) `  i )  e.  Q  /\  ( ( ( I evalSub  S ) `  R
) `  i )  e.  { x  |  ps } )  /\  (
( ( ( I evalSub  S ) `  R
) `  j )  e.  Q  /\  (
( ( I evalSub  S
) `  R ) `  j )  e.  {
x  |  ps }
) ) )  -> 
( ( ( ( I evalSub  S ) `  R
) `  i )  o F  .+  ( ( ( I evalSub  S ) `
 R ) `  j ) )  e. 
{ x  |  ps } ) ) )
111 mpfind.ad . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
f  e.  Q  /\  ta )  /\  (
g  e.  Q  /\  et ) ) )  ->  ze )
11286, 87, 110, 111vtocl2 2839 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
( ( ( I evalSub  S ) `  R
) `  i )  e.  Q  /\  (
( ( I evalSub  S
) `  R ) `  i )  e.  {
x  |  ps }
)  /\  ( (
( ( I evalSub  S
) `  R ) `  j )  e.  Q  /\  ( ( ( I evalSub  S ) `  R
) `  j )  e.  { x  |  ps } ) ) )  ->  ( ( ( ( I evalSub  S ) `
 R ) `  i )  o F 
.+  ( ( ( I evalSub  S ) `  R
) `  j )
)  e.  { x  |  ps } )
11371, 79, 85, 112syl12anc 1180 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( ( ( ( I evalSub  S ) `
 R ) `  i )  o F 
.+  ( ( ( I evalSub  S ) `  R
) `  j )
)  e.  { x  |  ps } )
11470, 113eqeltrd 2357 . . . . . . . . 9  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( ( ( I evalSub  S ) `  R
) `  ( i
( +g  `  ( I mPoly 
( Ss  R ) ) ) j ) )  e. 
{ x  |  ps } )
115 elpreima 5645 . . . . . . . . . . 11  |-  ( ( ( I evalSub  S ) `
 R )  Fn  ( Base `  (
I mPoly  ( Ss  R ) ) )  ->  (
( i ( +g  `  ( I mPoly  ( Ss  R ) ) ) j )  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } )  <->  ( (
i ( +g  `  (
I mPoly  ( Ss  R ) ) ) j )  e.  ( Base `  (
I mPoly  ( Ss  R ) ) )  /\  (
( ( I evalSub  S
) `  R ) `  ( i ( +g  `  ( I mPoly  ( Ss  R ) ) ) j ) )  e.  {
x  |  ps }
) ) )
11618, 115syl 15 . . . . . . . . . 10  |-  ( ph  ->  ( ( i ( +g  `  ( I mPoly 
( Ss  R ) ) ) j )  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  <->  ( (
i ( +g  `  (
I mPoly  ( Ss  R ) ) ) j )  e.  ( Base `  (
I mPoly  ( Ss  R ) ) )  /\  (
( ( I evalSub  S
) `  R ) `  ( i ( +g  `  ( I mPoly  ( Ss  R ) ) ) j ) )  e.  {
x  |  ps }
) ) )
117116adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( ( i ( +g  `  (
I mPoly  ( Ss  R ) ) ) j )  e.  ( `' ( ( I evalSub  S ) `
 R ) " { x  |  ps } )  <->  ( (
i ( +g  `  (
I mPoly  ( Ss  R ) ) ) j )  e.  ( Base `  (
I mPoly  ( Ss  R ) ) )  /\  (
( ( I evalSub  S
) `  R ) `  ( i ( +g  `  ( I mPoly  ( Ss  R ) ) ) j ) )  e.  {
x  |  ps }
) ) )
11853, 114, 117mpbir2and 888 . . . . . . . 8  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( i ( +g  `  ( I mPoly 
( Ss  R ) ) ) j )  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } ) )
119118adantlr 695 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( Base `  (
I mPoly  ( Ss  R ) ) ) )  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( i ( +g  `  ( I mPoly 
( Ss  R ) ) ) j )  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } ) )
12013, 28rngcl 15354 . . . . . . . . . 10  |-  ( ( ( I mPoly  ( Ss  R ) )  e.  Ring  /\  i  e.  ( Base `  ( I mPoly  ( Ss  R ) ) )  /\  j  e.  ( Base `  ( I mPoly  ( Ss  R ) ) ) )  ->  ( i ( .r `  ( I mPoly 
( Ss  R ) ) ) j )  e.  (
Base `  ( I mPoly  ( Ss  R ) ) ) )
12139, 45, 51, 120syl3anc 1182 . . . . . . . . 9  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( i ( .r `  ( I mPoly 
( Ss  R ) ) ) j )  e.  (
Base `  ( I mPoly  ( Ss  R ) ) ) )
122 eqid 2283 . . . . . . . . . . . . . . 15  |-  (mulGrp `  ( I mPoly  ( Ss  R
) ) )  =  (mulGrp `  ( I mPoly  ( Ss  R ) ) )
123 eqid 2283 . . . . . . . . . . . . . . 15  |-  (mulGrp `  ( S  ^s  ( B  ^m  I ) ) )  =  (mulGrp `  ( S  ^s  ( B  ^m  I
) ) )
124122, 123rhmmhm 15502 . . . . . . . . . . . . . 14  |-  ( ( ( I evalSub  S ) `
 R )  e.  ( ( I mPoly  ( Ss  R ) ) RingHom  ( S  ^s  ( B  ^m  I
) ) )  -> 
( ( I evalSub  S
) `  R )  e.  ( (mulGrp `  (
I mPoly  ( Ss  R ) ) ) MndHom  (mulGrp `  ( S  ^s  ( B  ^m  I ) ) ) ) )
12512, 124syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( I evalSub  S
) `  R )  e.  ( (mulGrp `  (
I mPoly  ( Ss  R ) ) ) MndHom  (mulGrp `  ( S  ^s  ( B  ^m  I ) ) ) ) )
126125adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( ( I evalSub  S ) `  R
)  e.  ( (mulGrp `  ( I mPoly  ( Ss  R ) ) ) MndHom  (mulGrp `  ( S  ^s  ( B  ^m  I ) ) ) ) )
127122, 13mgpbas 15331 . . . . . . . . . . . . 13  |-  ( Base `  ( I mPoly  ( Ss  R ) ) )  =  ( Base `  (mulGrp `  ( I mPoly  ( Ss  R ) ) ) )
128122, 28mgpplusg 15329 . . . . . . . . . . . . 13  |-  ( .r
`  ( I mPoly  ( Ss  R ) ) )  =  ( +g  `  (mulGrp `  ( I mPoly  ( Ss  R ) ) ) )
129 eqid 2283 . . . . . . . . . . . . . 14  |-  ( .r
`  ( S  ^s  ( B  ^m  I ) ) )  =  ( .r
`  ( S  ^s  ( B  ^m  I ) ) )
130123, 129mgpplusg 15329 . . . . . . . . . . . . 13  |-  ( .r
`  ( S  ^s  ( B  ^m  I ) ) )  =  ( +g  `  (mulGrp `  ( S  ^s  ( B  ^m  I ) ) ) )
131127, 128, 130mhmlin 14422 . . . . . . . . . . . 12  |-  ( ( ( ( I evalSub  S
) `  R )  e.  ( (mulGrp `  (
I mPoly  ( Ss  R ) ) ) MndHom  (mulGrp `  ( S  ^s  ( B  ^m  I ) ) ) )  /\  i  e.  ( Base `  (
I mPoly  ( Ss  R ) ) )  /\  j  e.  ( Base `  (
I mPoly  ( Ss  R ) ) ) )  -> 
( ( ( I evalSub  S ) `  R
) `  ( i
( .r `  (
I mPoly  ( Ss  R ) ) ) j ) )  =  ( ( ( ( I evalSub  S
) `  R ) `  i ) ( .r
`  ( S  ^s  ( B  ^m  I ) ) ) ( ( ( I evalSub  S ) `  R
) `  j )
) )
132126, 45, 51, 131syl3anc 1182 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( ( ( I evalSub  S ) `  R
) `  ( i
( .r `  (
I mPoly  ( Ss  R ) ) ) j ) )  =  ( ( ( ( I evalSub  S
) `  R ) `  i ) ( .r
`  ( S  ^s  ( B  ^m  I ) ) ) ( ( ( I evalSub  S ) `  R
) `  j )
) )
133 mpfind.ct . . . . . . . . . . . 12  |-  .x.  =  ( .r `  S )
1349, 14, 60, 62, 65, 67, 133, 129pwsmulrval 13390 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( ( ( ( I evalSub  S ) `
 R ) `  i ) ( .r
`  ( S  ^s  ( B  ^m  I ) ) ) ( ( ( I evalSub  S ) `  R
) `  j )
)  =  ( ( ( ( I evalSub  S
) `  R ) `  i )  o F 
.x.  ( ( ( I evalSub  S ) `  R
) `  j )
) )
135132, 134eqtrd 2315 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( ( ( I evalSub  S ) `  R
) `  ( i
( .r `  (
I mPoly  ( Ss  R ) ) ) j ) )  =  ( ( ( ( I evalSub  S
) `  R ) `  i )  o F 
.x.  ( ( ( I evalSub  S ) `  R
) `  j )
) )
136 ovex 5883 . . . . . . . . . . . . . . 15  |-  ( f  o F  .x.  g
)  e.  _V
137 mpfind.wf . . . . . . . . . . . . . . 15  |-  ( x  =  ( f  o F  .x.  g )  ->  ( ps  <->  si )
)
138136, 137elab 2914 . . . . . . . . . . . . . 14  |-  ( ( f  o F  .x.  g )  e.  {
x  |  ps }  <->  si )
139 oveq12 5867 . . . . . . . . . . . . . . 15  |-  ( ( f  =  ( ( ( I evalSub  S ) `
 R ) `  i )  /\  g  =  ( ( ( I evalSub  S ) `  R
) `  j )
)  ->  ( f  o F  .x.  g )  =  ( ( ( ( I evalSub  S ) `
 R ) `  i )  o F 
.x.  ( ( ( I evalSub  S ) `  R
) `  j )
) )
140139eleq1d 2349 . . . . . . . . . . . . . 14  |-  ( ( f  =  ( ( ( I evalSub  S ) `
 R ) `  i )  /\  g  =  ( ( ( I evalSub  S ) `  R
) `  j )
)  ->  ( (
f  o F  .x.  g )  e.  {
x  |  ps }  <->  ( ( ( ( I evalSub  S ) `  R
) `  i )  o F  .x.  ( ( ( I evalSub  S ) `
 R ) `  j ) )  e. 
{ x  |  ps } ) )
141138, 140syl5bbr 250 . . . . . . . . . . . . 13  |-  ( ( f  =  ( ( ( I evalSub  S ) `
 R ) `  i )  /\  g  =  ( ( ( I evalSub  S ) `  R
) `  j )
)  ->  ( si  <->  ( ( ( ( I evalSub  S ) `  R
) `  i )  o F  .x.  ( ( ( I evalSub  S ) `
 R ) `  j ) )  e. 
{ x  |  ps } ) )
142103, 141imbi12d 311 . . . . . . . . . . . 12  |-  ( ( f  =  ( ( ( I evalSub  S ) `
 R ) `  i )  /\  g  =  ( ( ( I evalSub  S ) `  R
) `  j )
)  ->  ( (
( ph  /\  (
( f  e.  Q  /\  ta )  /\  (
g  e.  Q  /\  et ) ) )  ->  si )  <->  ( ( ph  /\  ( ( ( ( ( I evalSub  S ) `
 R ) `  i )  e.  Q  /\  ( ( ( I evalSub  S ) `  R
) `  i )  e.  { x  |  ps } )  /\  (
( ( ( I evalSub  S ) `  R
) `  j )  e.  Q  /\  (
( ( I evalSub  S
) `  R ) `  j )  e.  {
x  |  ps }
) ) )  -> 
( ( ( ( I evalSub  S ) `  R
) `  i )  o F  .x.  ( ( ( I evalSub  S ) `
 R ) `  j ) )  e. 
{ x  |  ps } ) ) )
143 mpfind.mu . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
f  e.  Q  /\  ta )  /\  (
g  e.  Q  /\  et ) ) )  ->  si )
14486, 87, 142, 143vtocl2 2839 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
( ( ( I evalSub  S ) `  R
) `  i )  e.  Q  /\  (
( ( I evalSub  S
) `  R ) `  i )  e.  {
x  |  ps }
)  /\  ( (
( ( I evalSub  S
) `  R ) `  j )  e.  Q  /\  ( ( ( I evalSub  S ) `  R
) `  j )  e.  { x  |  ps } ) ) )  ->  ( ( ( ( I evalSub  S ) `
 R ) `  i )  o F 
.x.  ( ( ( I evalSub  S ) `  R
) `  j )
)  e.  { x  |  ps } )
14571, 79, 85, 144syl12anc 1180 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( ( ( ( I evalSub  S ) `
 R ) `  i )  o F 
.x.  ( ( ( I evalSub  S ) `  R
) `  j )
)  e.  { x  |  ps } )
146135, 145eqeltrd 2357 . . . . . . . . 9  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( ( ( I evalSub  S ) `  R
) `  ( i
( .r `  (
I mPoly  ( Ss  R ) ) ) j ) )  e.  { x  |  ps } )
147 elpreima 5645 . . . . . . . . . . 11  |-  ( ( ( I evalSub  S ) `
 R )  Fn  ( Base `  (
I mPoly  ( Ss  R ) ) )  ->  (
( i ( .r
`  ( I mPoly  ( Ss  R ) ) ) j )  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  <->  ( (
i ( .r `  ( I mPoly  ( Ss  R
) ) ) j )  e.  ( Base `  ( I mPoly  ( Ss  R ) ) )  /\  ( ( ( I evalSub  S ) `  R
) `  ( i
( .r `  (
I mPoly  ( Ss  R ) ) ) j ) )  e.  { x  |  ps } ) ) )
14818, 147syl 15 . . . . . . . . . 10  |-  ( ph  ->  ( ( i ( .r `  ( I mPoly 
( Ss  R ) ) ) j )  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  <->  ( (
i ( .r `  ( I mPoly  ( Ss  R
) ) ) j )  e.  ( Base `  ( I mPoly  ( Ss  R ) ) )  /\  ( ( ( I evalSub  S ) `  R
) `  ( i
( .r `  (
I mPoly  ( Ss  R ) ) ) j ) )  e.  { x  |  ps } ) ) )
149148adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( ( i ( .r `  (
I mPoly  ( Ss  R ) ) ) j )  e.  ( `' ( ( I evalSub  S ) `
 R ) " { x  |  ps } )  <->  ( (
i ( .r `  ( I mPoly  ( Ss  R
) ) ) j )  e.  ( Base `  ( I mPoly  ( Ss  R ) ) )  /\  ( ( ( I evalSub  S ) `  R
) `  ( i
( .r `  (
I mPoly  ( Ss  R ) ) ) j ) )  e.  { x  |  ps } ) ) )
150121, 146, 149mpbir2and 888 . . . . . . . 8  |-  ( (
ph  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( i ( .r `  ( I mPoly 
( Ss  R ) ) ) j )  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } ) )
151150adantlr 695 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( Base `  (
I mPoly  ( Ss  R ) ) ) )  /\  ( i  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  /\  j  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) ) )  ->  ( i ( .r `  ( I mPoly 
( Ss  R ) ) ) j )  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } ) )
1527mplassa 16198 . . . . . . . . . . . . . 14  |-  ( ( I  e.  _V  /\  ( Ss  R )  e.  CRing )  ->  ( I mPoly  ( Ss  R ) )  e. AssAlg
)
15330, 34, 152syl2anc 642 . . . . . . . . . . . . 13  |-  ( ph  ->  ( I mPoly  ( Ss  R ) )  e. AssAlg )
154 eqid 2283 . . . . . . . . . . . . . 14  |-  (Scalar `  ( I mPoly  ( Ss  R
) ) )  =  (Scalar `  ( I mPoly  ( Ss  R ) ) )
15529, 154asclrhm 16081 . . . . . . . . . . . . 13  |-  ( ( I mPoly  ( Ss  R ) )  e. AssAlg  ->  (algSc `  ( I mPoly  ( Ss  R
) ) )  e.  ( (Scalar `  (
I mPoly  ( Ss  R ) ) ) RingHom  ( I mPoly 
( Ss  R ) ) ) )
156153, 155syl 15 . . . . . . . . . . . 12  |-  ( ph  ->  (algSc `  ( I mPoly  ( Ss  R ) ) )  e.  ( (Scalar `  ( I mPoly  ( Ss  R
) ) ) RingHom  (
I mPoly  ( Ss  R ) ) ) )
157 eqid 2283 . . . . . . . . . . . . 13  |-  ( Base `  (Scalar `  ( I mPoly  ( Ss  R ) ) ) )  =  ( Base `  (Scalar `  ( I mPoly  ( Ss  R ) ) ) )
158157, 13rhmf 15504 . . . . . . . . . . . 12  |-  ( (algSc `  ( I mPoly  ( Ss  R ) ) )  e.  ( (Scalar `  (
I mPoly  ( Ss  R ) ) ) RingHom  ( I mPoly 
( Ss  R ) ) )  ->  (algSc `  (
I mPoly  ( Ss  R ) ) ) : (
Base `  (Scalar `  (
I mPoly  ( Ss  R ) ) ) ) --> (
Base `  ( I mPoly  ( Ss  R ) ) ) )
159156, 158syl 15 . . . . . . . . . . 11  |-  ( ph  ->  (algSc `  ( I mPoly  ( Ss  R ) ) ) : ( Base `  (Scalar `  ( I mPoly  ( Ss  R ) ) ) ) --> ( Base `  (
I mPoly  ( Ss  R ) ) ) )
160159adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  ( Base `  ( Ss  R
) ) )  -> 
(algSc `  ( I mPoly  ( Ss  R ) ) ) : ( Base `  (Scalar `  ( I mPoly  ( Ss  R ) ) ) ) --> ( Base `  (
I mPoly  ( Ss  R ) ) ) )
1617, 30, 34mplsca 16189 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Ss  R )  =  (Scalar `  ( I mPoly  ( Ss  R ) ) ) )
162161fveq2d 5529 . . . . . . . . . . . 12  |-  ( ph  ->  ( Base `  ( Ss  R ) )  =  ( Base `  (Scalar `  ( I mPoly  ( Ss  R ) ) ) ) )
163162eleq2d 2350 . . . . . . . . . . 11  |-  ( ph  ->  ( i  e.  (
Base `  ( Ss  R
) )  <->  i  e.  ( Base `  (Scalar `  (
I mPoly  ( Ss  R ) ) ) ) ) )
164163biimpa 470 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  ( Base `  ( Ss  R
) ) )  -> 
i  e.  ( Base `  (Scalar `  ( I mPoly  ( Ss  R ) ) ) ) )
165 ffvelrn 5663 . . . . . . . . . 10  |-  ( ( (algSc `  ( I mPoly  ( Ss  R ) ) ) : ( Base `  (Scalar `  ( I mPoly  ( Ss  R ) ) ) ) --> ( Base `  (
I mPoly  ( Ss  R ) ) )  /\  i  e.  ( Base `  (Scalar `  ( I mPoly  ( Ss  R ) ) ) ) )  ->  ( (algSc `  ( I mPoly  ( Ss  R ) ) ) `  i )  e.  (
Base `  ( I mPoly  ( Ss  R ) ) ) )
166160, 164, 165syl2anc 642 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( Base `  ( Ss  R
) ) )  -> 
( (algSc `  (
I mPoly  ( Ss  R ) ) ) `  i
)  e.  ( Base `  ( I mPoly  ( Ss  R ) ) ) )
16730adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  ( Base `  ( Ss  R
) ) )  ->  I  e.  _V )
16831adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  ( Base `  ( Ss  R
) ) )  ->  S  e.  CRing )
16932adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  ( Base `  ( Ss  R
) ) )  ->  R  e.  (SubRing `  S
) )
17010subrgss 15546 . . . . . . . . . . . . . . 15  |-  ( R  e.  (SubRing `  S
)  ->  R  C_  B
)
17132, 170syl 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  R  C_  B )
1728, 10ressbas2 13199 . . . . . . . . . . . . . 14  |-  ( R 
C_  B  ->  R  =  ( Base `  ( Ss  R ) ) )
173171, 172syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  R  =  ( Base `  ( Ss  R ) ) )
174173eleq2d 2350 . . . . . . . . . . . 12  |-  ( ph  ->  ( i  e.  R  <->  i  e.  ( Base `  ( Ss  R ) ) ) )
175174biimpar 471 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  ( Base `  ( Ss  R
) ) )  -> 
i  e.  R )
1766, 7, 8, 10, 29, 167, 168, 169, 175evlssca 19406 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  ( Base `  ( Ss  R
) ) )  -> 
( ( ( I evalSub  S ) `  R
) `  ( (algSc `  ( I mPoly  ( Ss  R ) ) ) `  i ) )  =  ( ( B  ^m  I )  X.  {
i } ) )
177 mpfind.co . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  R )  ->  ch )
178177ralrimiva 2626 . . . . . . . . . . . . 13  |-  ( ph  ->  A. f  e.  R  ch )
179 snex 4216 . . . . . . . . . . . . . . . . 17  |-  { f }  e.  _V
18061, 179xpex 4801 . . . . . . . . . . . . . . . 16  |-  ( ( B  ^m  I )  X.  { f } )  e.  _V
181 mpfind.wa . . . . . . . . . . . . . . . 16  |-  ( x  =  ( ( B  ^m  I )  X. 
{ f } )  ->  ( ps  <->  ch )
)
182180, 181elab 2914 . . . . . . . . . . . . . . 15  |-  ( ( ( B  ^m  I
)  X.  { f } )  e.  {
x  |  ps }  <->  ch )
183 sneq 3651 . . . . . . . . . . . . . . . . 17  |-  ( f  =  i  ->  { f }  =  { i } )
184183xpeq2d 4713 . . . . . . . . . . . . . . . 16  |-  ( f  =  i  ->  (
( B  ^m  I
)  X.  { f } )  =  ( ( B  ^m  I
)  X.  { i } ) )
185184eleq1d 2349 . . . . . . . . . . . . . . 15  |-  ( f  =  i  ->  (
( ( B  ^m  I )  X.  {
f } )  e. 
{ x  |  ps } 
<->  ( ( B  ^m  I )  X.  {
i } )  e. 
{ x  |  ps } ) )
186182, 185syl5bbr 250 . . . . . . . . . . . . . 14  |-  ( f  =  i  ->  ( ch 
<->  ( ( B  ^m  I )  X.  {
i } )  e. 
{ x  |  ps } ) )
187186cbvralv 2764 . . . . . . . . . . . . 13  |-  ( A. f  e.  R  ch  <->  A. i  e.  R  ( ( B  ^m  I
)  X.  { i } )  e.  {
x  |  ps }
)
188178, 187sylib 188 . . . . . . . . . . . 12  |-  ( ph  ->  A. i  e.  R  ( ( B  ^m  I )  X.  {
i } )  e. 
{ x  |  ps } )
189188r19.21bi 2641 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  R )  ->  (
( B  ^m  I
)  X.  { i } )  e.  {
x  |  ps }
)
190175, 189syldan 456 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  ( Base `  ( Ss  R
) ) )  -> 
( ( B  ^m  I )  X.  {
i } )  e. 
{ x  |  ps } )
191176, 190eqeltrd 2357 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( Base `  ( Ss  R
) ) )  -> 
( ( ( I evalSub  S ) `  R
) `  ( (algSc `  ( I mPoly  ( Ss  R ) ) ) `  i ) )  e. 
{ x  |  ps } )
192 elpreima 5645 . . . . . . . . . . 11  |-  ( ( ( I evalSub  S ) `
 R )  Fn  ( Base `  (
I mPoly  ( Ss  R ) ) )  ->  (
( (algSc `  (
I mPoly  ( Ss  R ) ) ) `  i
)  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } )  <->  ( (
(algSc `  ( I mPoly  ( Ss  R ) ) ) `
 i )  e.  ( Base `  (
I mPoly  ( Ss  R ) ) )  /\  (
( ( I evalSub  S
) `  R ) `  ( (algSc `  (
I mPoly  ( Ss  R ) ) ) `  i
) )  e.  {
x  |  ps }
) ) )
19318, 192syl 15 . . . . . . . . . 10  |-  ( ph  ->  ( ( (algSc `  ( I mPoly  ( Ss  R
) ) ) `  i )  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  <->  ( (
(algSc `  ( I mPoly  ( Ss  R ) ) ) `
 i )  e.  ( Base `  (
I mPoly  ( Ss  R ) ) )  /\  (
( ( I evalSub  S
) `  R ) `  ( (algSc `  (
I mPoly  ( Ss  R ) ) ) `  i
) )  e.  {
x  |  ps }
) ) )
194193adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( Base `  ( Ss  R
) ) )  -> 
( ( (algSc `  ( I mPoly  ( Ss  R
) ) ) `  i )  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  <->  ( (
(algSc `  ( I mPoly  ( Ss  R ) ) ) `
 i )  e.  ( Base `  (
I mPoly  ( Ss  R ) ) )  /\  (
( ( I evalSub  S
) `  R ) `  ( (algSc `  (
I mPoly  ( Ss  R ) ) ) `  i
) )  e.  {
x  |  ps }
) ) )
195166, 191, 194mpbir2and 888 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( Base `  ( Ss  R
) ) )  -> 
( (algSc `  (
I mPoly  ( Ss  R ) ) ) `  i
)  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) )
196195adantlr 695 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( Base `  (
I mPoly  ( Ss  R ) ) ) )  /\  i  e.  ( Base `  ( Ss  R ) ) )  ->  ( (algSc `  ( I mPoly  ( Ss  R
) ) ) `  i )  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } ) )
19730adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  I )  ->  I  e.  _V )
19836adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  I )  ->  ( Ss  R )  e.  Ring )
199 simpr 447 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  I )  ->  i  e.  I )
2007, 26, 13, 197, 198, 199mvrcl 16193 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  I )  ->  (
( I mVar  ( Ss  R ) ) `  i
)  e.  ( Base `  ( I mPoly  ( Ss  R ) ) ) )
20131adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  I )  ->  S  e.  CRing )
20232adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  I )  ->  R  e.  (SubRing `  S )
)
2036, 26, 8, 10, 197, 201, 202, 199evlsvar 19407 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  I )  ->  (
( ( I evalSub  S
) `  R ) `  ( ( I mVar  ( Ss  R ) ) `  i ) )  =  ( g  e.  ( B  ^m  I ) 
|->  ( g `  i
) ) )
204 mpfind.pr . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  I )  ->  th )
20561mptex 5746 . . . . . . . . . . . . . . 15  |-  ( g  e.  ( B  ^m  I )  |->  ( g `
 f ) )  e.  _V
206 mpfind.wb . . . . . . . . . . . . . . 15  |-  ( x  =  ( g  e.  ( B  ^m  I
)  |->  ( g `  f ) )  -> 
( ps  <->  th )
)
207205, 206elab 2914 . . . . . . . . . . . . . 14  |-  ( ( g  e.  ( B  ^m  I )  |->  ( g `  f ) )  e.  { x  |  ps }  <->  th )
208204, 207sylibr 203 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  I )  ->  (
g  e.  ( B  ^m  I )  |->  ( g `  f ) )  e.  { x  |  ps } )
209208ralrimiva 2626 . . . . . . . . . . . 12  |-  ( ph  ->  A. f  e.  I 
( g  e.  ( B  ^m  I ) 
|->  ( g `  f
) )  e.  {
x  |  ps }
)
210 fveq2 5525 . . . . . . . . . . . . . . 15  |-  ( f  =  i  ->  (
g `  f )  =  ( g `  i ) )
211210mpteq2dv 4107 . . . . . . . . . . . . . 14  |-  ( f  =  i  ->  (
g  e.  ( B  ^m  I )  |->  ( g `  f ) )  =  ( g  e.  ( B  ^m  I )  |->  ( g `
 i ) ) )
212211eleq1d 2349 . . . . . . . . . . . . 13  |-  ( f  =  i  ->  (
( g  e.  ( B  ^m  I ) 
|->  ( g `  f
) )  e.  {
x  |  ps }  <->  ( g  e.  ( B  ^m  I )  |->  ( g `  i ) )  e.  { x  |  ps } ) )
213212cbvralv 2764 . . . . . . . . . . . 12  |-  ( A. f  e.  I  (
g  e.  ( B  ^m  I )  |->  ( g `  f ) )  e.  { x  |  ps }  <->  A. i  e.  I  ( g  e.  ( B  ^m  I
)  |->  ( g `  i ) )  e. 
{ x  |  ps } )
214209, 213sylib 188 . . . . . . . . . . 11  |-  ( ph  ->  A. i  e.  I 
( g  e.  ( B  ^m  I ) 
|->  ( g `  i
) )  e.  {
x  |  ps }
)
215214r19.21bi 2641 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  I )  ->  (
g  e.  ( B  ^m  I )  |->  ( g `  i ) )  e.  { x  |  ps } )
216203, 215eqeltrd 2357 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  I )  ->  (
( ( I evalSub  S
) `  R ) `  ( ( I mVar  ( Ss  R ) ) `  i ) )  e. 
{ x  |  ps } )
217 elpreima 5645 . . . . . . . . . . 11  |-  ( ( ( I evalSub  S ) `
 R )  Fn  ( Base `  (
I mPoly  ( Ss  R ) ) )  ->  (
( ( I mVar  ( Ss  R ) ) `  i )  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  <->  ( (
( I mVar  ( Ss  R ) ) `  i
)  e.  ( Base `  ( I mPoly  ( Ss  R ) ) )  /\  ( ( ( I evalSub  S ) `  R
) `  ( (
I mVar  ( Ss  R ) ) `  i ) )  e.  { x  |  ps } ) ) )
21818, 217syl 15 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( I mVar  ( Ss  R ) ) `  i )  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  <->  ( (
( I mVar  ( Ss  R ) ) `  i
)  e.  ( Base `  ( I mPoly  ( Ss  R ) ) )  /\  ( ( ( I evalSub  S ) `  R
) `  ( (
I mVar  ( Ss  R ) ) `  i ) )  e.  { x  |  ps } ) ) )
219218adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  I )  ->  (
( ( I mVar  ( Ss  R ) ) `  i )  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } )  <->  ( (
( I mVar  ( Ss  R ) ) `  i
)  e.  ( Base `  ( I mPoly  ( Ss  R ) ) )  /\  ( ( ( I evalSub  S ) `  R
) `  ( (
I mVar  ( Ss  R ) ) `  i ) )  e.  { x  |  ps } ) ) )
220200, 216, 219mpbir2and 888 . . . . . . . 8  |-  ( (
ph  /\  i  e.  I )  ->  (
( I mVar  ( Ss  R ) ) `  i
)  e.  ( `' ( ( I evalSub  S
) `  R ) " { x  |  ps } ) )
221220adantlr 695 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( Base `  (
I mPoly  ( Ss  R ) ) ) )  /\  i  e.  I )  ->  ( ( I mVar  ( Ss  R ) ) `  i )  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } ) )
222 simpr 447 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( Base `  ( I mPoly  ( Ss  R ) ) ) )  ->  y  e.  ( Base `  ( I mPoly  ( Ss  R ) ) ) )
22330adantr 451 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( Base `  ( I mPoly  ( Ss  R ) ) ) )  ->  I  e.  _V )
22434adantr 451 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( Base `  ( I mPoly  ( Ss  R ) ) ) )  ->  ( Ss  R
)  e.  CRing )
22525, 26, 7, 27, 28, 29, 13, 119, 151, 196, 221, 222, 223, 224mplind 16243 . . . . . 6  |-  ( (
ph  /\  y  e.  ( Base `  ( I mPoly  ( Ss  R ) ) ) )  ->  y  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } ) )
226 fvimacnvi 5639 . . . . . 6  |-  ( ( Fun  ( ( I evalSub  S ) `  R
)  /\  y  e.  ( `' ( ( I evalSub  S ) `  R
) " { x  |  ps } ) )  ->  ( ( ( I evalSub  S ) `  R
) `  y )  e.  { x  |  ps } )
22724, 225, 226syl2anc 642 . . . . 5  |-  ( (
ph  /\  y  e.  ( Base `  ( I mPoly  ( Ss  R ) ) ) )  ->  ( (
( I evalSub  S ) `  R ) `  y
)  e.  { x  |  ps } )
228 eleq1 2343 . . . . 5  |-  ( ( ( ( I evalSub  S
) `  R ) `  y )  =  A  ->  ( ( ( ( I evalSub  S ) `
 R ) `  y )  e.  {
x  |  ps }  <->  A  e.  { x  |  ps } ) )
229227, 228syl5ibcom 211 . . . 4  |-  ( (
ph  /\  y  e.  ( Base `  ( I mPoly  ( Ss  R ) ) ) )  ->  ( (
( ( I evalSub  S
) `  R ) `  y )  =  A  ->  A  e.  {
x  |  ps }
) )
230229rexlimdva 2667 . . 3  |-  ( ph  ->  ( E. y  e.  ( Base `  (
I mPoly  ( Ss  R ) ) ) ( ( ( I evalSub  S ) `
 R ) `  y )  =  A  ->  A  e.  {
x  |  ps }
) )
23121, 230mpd 14 . 2  |-  ( ph  ->  A  e.  { x  |  ps } )
232 mpfind.wg . . . 4  |-  ( x  =  A  ->  ( ps 
<->  rh ) )
233232elabg 2915 . . 3  |-  ( A  e.  Q  ->  ( A  e.  { x  |  ps }  <->  rh )
)
2341, 233syl 15 . 2  |-  ( ph  ->  ( A  e.  {
x  |  ps }  <->  rh ) )
235231, 234mpbid 201 1  |-  ( ph  ->  rh )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   {cab 2269   A.wral 2543   E.wrex 2544   _Vcvv 2788    C_ wss 3152   {csn 3640    e. cmpt 4077    X. cxp 4687   `'ccnv 4688   ran crn 4690   "cima 4692   Fun wfun 5249    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858    o Fcof 6076    ^m cmap 6772   Basecbs 13148   ↾s cress 13149   +g cplusg 13208   .rcmulr 13209  Scalarcsca 13211    ^s cpws 13347   MndHom cmhm 14413    GrpHom cghm 14680  mulGrpcmgp 15325   Ringcrg 15337   CRingccrg 15338   RingHom crh 15494  SubRingcsubrg 15541  AssAlgcasa 16050  algSccascl 16052   mVar cmvr 16088   mPoly cmpl 16089   evalSub ces 16090
This theorem is referenced by:  pf1ind  19438  mzpmfp  26825
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-ofr 6079  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-fz 10783  df-fzo 10871  df-seq 11047  df-hash 11338  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-prds 13348  df-pws 13350  df-0g 13404  df-gsum 13405  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-mhm 14415  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-subg 14618  df-ghm 14681  df-cntz 14793  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-cring 15341  df-ur 15342  df-rnghom 15496  df-subrg 15543  df-lmod 15629  df-lss 15690  df-lsp 15729  df-assa 16053  df-asp 16054  df-ascl 16055  df-psr 16098  df-mvr 16099  df-mpl 16100  df-evls 16101
  Copyright terms: Public domain W3C validator