MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpgbi Unicode version

Theorem mpgbi 1536
Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.)
Hypotheses
Ref Expression
mpgbi.1  |-  ( A. x ph  <->  ps )
mpgbi.2  |-  ph
Assertion
Ref Expression
mpgbi  |-  ps

Proof of Theorem mpgbi
StepHypRef Expression
1 mpgbi.2 . . 3  |-  ph
21ax-gen 1533 . 2  |-  A. x ph
3 mpgbi.1 . 2  |-  ( A. x ph  <->  ps )
42, 3mpbi 199 1  |-  ps
Colors of variables: wff set class
Syntax hints:    <-> wb 176   A.wal 1527
This theorem is referenced by:  nex  1542  exlimih  1729  exlimi  1801  exan  1823  abbii  2395  nalset  4151  bnj1304  28852  bnj1052  29005  bnj1030  29017
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533
This theorem depends on definitions:  df-bi 177
  Copyright terms: Public domain W3C validator