MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpllsslem Unicode version

Theorem mpllsslem 16180
Description: If  A is an ideal of subsets (a nonempty collection closed under subset and binary union) of the set  D of finite bags (the primary applications being  A  =  Fin and  A  =  ~P B for some  B), then the set of all power series whose coefficient functions are supported on an element of  A is a linear subspace of the set of all power series. (Contributed by Mario Carneiro, 12-Jan-2015.)
Hypotheses
Ref Expression
mplsubglem.s  |-  S  =  ( I mPwSer  R )
mplsubglem.b  |-  B  =  ( Base `  S
)
mplsubglem.z  |-  .0.  =  ( 0g `  R )
mplsubglem.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
mplsubglem.i  |-  ( ph  ->  I  e.  W )
mplsubglem.0  |-  ( ph  -> 
(/)  e.  A )
mplsubglem.a  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( x  u.  y
)  e.  A )
mplsubglem.y  |-  ( (
ph  /\  ( x  e.  A  /\  y  C_  x ) )  -> 
y  e.  A )
mplsubglem.u  |-  ( ph  ->  U  =  { g  e.  B  |  ( `' g " ( _V  \  {  .0.  }
) )  e.  A } )
mpllsslem.r  |-  ( ph  ->  R  e.  Ring )
Assertion
Ref Expression
mpllsslem  |-  ( ph  ->  U  e.  ( LSubSp `  S ) )
Distinct variable groups:    f, g, x, y,  .0.    A, f, g, x, y    B, f, g    D, g    f, I    ph, x, y    S, f, g, y
Allowed substitution hints:    ph( f, g)    B( x, y)    D( x, y, f)    R( x, y, f, g)    S( x)    U( x, y, f, g)    I( x, y, g)    W( x, y, f, g)

Proof of Theorem mpllsslem
Dummy variables  k  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplsubglem.s . . 3  |-  S  =  ( I mPwSer  R )
2 mplsubglem.i . . 3  |-  ( ph  ->  I  e.  W )
3 mpllsslem.r . . 3  |-  ( ph  ->  R  e.  Ring )
41, 2, 3psrsca 16134 . 2  |-  ( ph  ->  R  =  (Scalar `  S ) )
5 eqidd 2284 . 2  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  R ) )
6 mplsubglem.b . . 3  |-  B  =  ( Base `  S
)
76a1i 10 . 2  |-  ( ph  ->  B  =  ( Base `  S ) )
8 eqidd 2284 . 2  |-  ( ph  ->  ( +g  `  S
)  =  ( +g  `  S ) )
9 eqidd 2284 . 2  |-  ( ph  ->  ( .s `  S
)  =  ( .s
`  S ) )
10 eqidd 2284 . 2  |-  ( ph  ->  ( LSubSp `  S )  =  ( LSubSp `  S
) )
11 mplsubglem.z . . . 4  |-  .0.  =  ( 0g `  R )
12 mplsubglem.d . . . 4  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
13 mplsubglem.0 . . . 4  |-  ( ph  -> 
(/)  e.  A )
14 mplsubglem.a . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( x  u.  y
)  e.  A )
15 mplsubglem.y . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  C_  x ) )  -> 
y  e.  A )
16 mplsubglem.u . . . 4  |-  ( ph  ->  U  =  { g  e.  B  |  ( `' g " ( _V  \  {  .0.  }
) )  e.  A } )
17 rnggrp 15346 . . . . 5  |-  ( R  e.  Ring  ->  R  e. 
Grp )
183, 17syl 15 . . . 4  |-  ( ph  ->  R  e.  Grp )
191, 6, 11, 12, 2, 13, 14, 15, 16, 18mplsubglem 16179 . . 3  |-  ( ph  ->  U  e.  (SubGrp `  S ) )
206subgss 14622 . . 3  |-  ( U  e.  (SubGrp `  S
)  ->  U  C_  B
)
2119, 20syl 15 . 2  |-  ( ph  ->  U  C_  B )
22 eqid 2283 . . . 4  |-  ( 0g
`  S )  =  ( 0g `  S
)
2322subg0cl 14629 . . 3  |-  ( U  e.  (SubGrp `  S
)  ->  ( 0g `  S )  e.  U
)
24 ne0i 3461 . . 3  |-  ( ( 0g `  S )  e.  U  ->  U  =/=  (/) )
2519, 23, 243syl 18 . 2  |-  ( ph  ->  U  =/=  (/) )
2619adantr 451 . . 3  |-  ( (
ph  /\  ( u  e.  ( Base `  R
)  /\  v  e.  U  /\  w  e.  U
) )  ->  U  e.  (SubGrp `  S )
)
27 eqid 2283 . . . . . 6  |-  ( .s
`  S )  =  ( .s `  S
)
28 eqid 2283 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
293adantr 451 . . . . . 6  |-  ( (
ph  /\  ( u  e.  ( Base `  R
)  /\  v  e.  U ) )  ->  R  e.  Ring )
30 simprl 732 . . . . . 6  |-  ( (
ph  /\  ( u  e.  ( Base `  R
)  /\  v  e.  U ) )  ->  u  e.  ( Base `  R ) )
31 simprr 733 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  ( Base `  R
)  /\  v  e.  U ) )  -> 
v  e.  U )
3216adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( Base `  R
)  /\  v  e.  U ) )  ->  U  =  { g  e.  B  |  ( `' g " ( _V  \  {  .0.  }
) )  e.  A } )
3332eleq2d 2350 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  ( Base `  R
)  /\  v  e.  U ) )  -> 
( v  e.  U  <->  v  e.  { g  e.  B  |  ( `' g " ( _V 
\  {  .0.  }
) )  e.  A } ) )
34 cnveq 4855 . . . . . . . . . . . 12  |-  ( g  =  v  ->  `' g  =  `' v
)
3534imaeq1d 5011 . . . . . . . . . . 11  |-  ( g  =  v  ->  ( `' g " ( _V  \  {  .0.  }
) )  =  ( `' v " ( _V  \  {  .0.  }
) ) )
3635eleq1d 2349 . . . . . . . . . 10  |-  ( g  =  v  ->  (
( `' g "
( _V  \  {  .0.  } ) )  e.  A  <->  ( `' v
" ( _V  \  {  .0.  } ) )  e.  A ) )
3736elrab 2923 . . . . . . . . 9  |-  ( v  e.  { g  e.  B  |  ( `' g " ( _V 
\  {  .0.  }
) )  e.  A } 
<->  ( v  e.  B  /\  ( `' v "
( _V  \  {  .0.  } ) )  e.  A ) )
3833, 37syl6bb 252 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  ( Base `  R
)  /\  v  e.  U ) )  -> 
( v  e.  U  <->  ( v  e.  B  /\  ( `' v " ( _V  \  {  .0.  }
) )  e.  A
) ) )
3931, 38mpbid 201 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  ( Base `  R
)  /\  v  e.  U ) )  -> 
( v  e.  B  /\  ( `' v "
( _V  \  {  .0.  } ) )  e.  A ) )
4039simpld 445 . . . . . 6  |-  ( (
ph  /\  ( u  e.  ( Base `  R
)  /\  v  e.  U ) )  -> 
v  e.  B )
411, 27, 28, 6, 29, 30, 40psrvscacl 16138 . . . . 5  |-  ( (
ph  /\  ( u  e.  ( Base `  R
)  /\  v  e.  U ) )  -> 
( u ( .s
`  S ) v )  e.  B )
421, 28, 12, 6, 41psrelbas 16125 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  ( Base `  R
)  /\  v  e.  U ) )  -> 
( u ( .s
`  S ) v ) : D --> ( Base `  R ) )
43 eqid 2283 . . . . . . . . . 10  |-  ( .r
`  R )  =  ( .r `  R
)
4430adantr 451 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  ( Base `  R )  /\  v  e.  U ) )  /\  k  e.  ( D  \  ( `' v "
( _V  \  {  .0.  } ) ) ) )  ->  u  e.  ( Base `  R )
)
4540adantr 451 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  ( Base `  R )  /\  v  e.  U ) )  /\  k  e.  ( D  \  ( `' v "
( _V  \  {  .0.  } ) ) ) )  ->  v  e.  B )
46 eldifi 3298 . . . . . . . . . . 11  |-  ( k  e.  ( D  \ 
( `' v "
( _V  \  {  .0.  } ) ) )  ->  k  e.  D
)
4746adantl 452 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  ( Base `  R )  /\  v  e.  U ) )  /\  k  e.  ( D  \  ( `' v "
( _V  \  {  .0.  } ) ) ) )  ->  k  e.  D )
481, 27, 28, 6, 43, 12, 44, 45, 47psrvscaval 16137 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( Base `  R )  /\  v  e.  U ) )  /\  k  e.  ( D  \  ( `' v "
( _V  \  {  .0.  } ) ) ) )  ->  ( (
u ( .s `  S ) v ) `
 k )  =  ( u ( .r
`  R ) ( v `  k ) ) )
491, 28, 12, 6, 40psrelbas 16125 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  ( Base `  R
)  /\  v  e.  U ) )  -> 
v : D --> ( Base `  R ) )
50 ssid 3197 . . . . . . . . . . . 12  |-  ( `' v " ( _V 
\  {  .0.  }
) )  C_  ( `' v " ( _V  \  {  .0.  }
) )
5150a1i 10 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  ( Base `  R
)  /\  v  e.  U ) )  -> 
( `' v "
( _V  \  {  .0.  } ) )  C_  ( `' v " ( _V  \  {  .0.  }
) ) )
5249, 51suppssr 5659 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  ( Base `  R )  /\  v  e.  U ) )  /\  k  e.  ( D  \  ( `' v "
( _V  \  {  .0.  } ) ) ) )  ->  ( v `  k )  =  .0.  )
5352oveq2d 5874 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( Base `  R )  /\  v  e.  U ) )  /\  k  e.  ( D  \  ( `' v "
( _V  \  {  .0.  } ) ) ) )  ->  ( u
( .r `  R
) ( v `  k ) )  =  ( u ( .r
`  R )  .0.  ) )
5428, 43, 11rngrz 15378 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  u  e.  ( Base `  R
) )  ->  (
u ( .r `  R )  .0.  )  =  .0.  )
5529, 30, 54syl2anc 642 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( Base `  R
)  /\  v  e.  U ) )  -> 
( u ( .r
`  R )  .0.  )  =  .0.  )
5655adantr 451 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( Base `  R )  /\  v  e.  U ) )  /\  k  e.  ( D  \  ( `' v "
( _V  \  {  .0.  } ) ) ) )  ->  ( u
( .r `  R
)  .0.  )  =  .0.  )
5748, 53, 563eqtrd 2319 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( Base `  R )  /\  v  e.  U ) )  /\  k  e.  ( D  \  ( `' v "
( _V  \  {  .0.  } ) ) ) )  ->  ( (
u ( .s `  S ) v ) `
 k )  =  .0.  )
5842, 57suppss 5658 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  ( Base `  R
)  /\  v  e.  U ) )  -> 
( `' ( u ( .s `  S
) v ) "
( _V  \  {  .0.  } ) )  C_  ( `' v " ( _V  \  {  .0.  }
) ) )
5939simprd 449 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  ( Base `  R
)  /\  v  e.  U ) )  -> 
( `' v "
( _V  \  {  .0.  } ) )  e.  A )
60 ssexg 4160 . . . . . . 7  |-  ( ( ( `' ( u ( .s `  S
) v ) "
( _V  \  {  .0.  } ) )  C_  ( `' v " ( _V  \  {  .0.  }
) )  /\  ( `' v " ( _V  \  {  .0.  }
) )  e.  A
)  ->  ( `' ( u ( .s
`  S ) v ) " ( _V 
\  {  .0.  }
) )  e.  _V )
6158, 59, 60syl2anc 642 . . . . . 6  |-  ( (
ph  /\  ( u  e.  ( Base `  R
)  /\  v  e.  U ) )  -> 
( `' ( u ( .s `  S
) v ) "
( _V  \  {  .0.  } ) )  e. 
_V )
6215expr 598 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
y  C_  x  ->  y  e.  A ) )
6362alrimiv 1617 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  A. y
( y  C_  x  ->  y  e.  A ) )
6463ralrimiva 2626 . . . . . . . 8  |-  ( ph  ->  A. x  e.  A  A. y ( y  C_  x  ->  y  e.  A
) )
6564adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  ( Base `  R
)  /\  v  e.  U ) )  ->  A. x  e.  A  A. y ( y  C_  x  ->  y  e.  A
) )
66 sseq2 3200 . . . . . . . . . 10  |-  ( x  =  ( `' v
" ( _V  \  {  .0.  } ) )  ->  ( y  C_  x 
<->  y  C_  ( `' v " ( _V  \  {  .0.  } ) ) ) )
6766imbi1d 308 . . . . . . . . 9  |-  ( x  =  ( `' v
" ( _V  \  {  .0.  } ) )  ->  ( ( y 
C_  x  ->  y  e.  A )  <->  ( y  C_  ( `' v "
( _V  \  {  .0.  } ) )  -> 
y  e.  A ) ) )
6867albidv 1611 . . . . . . . 8  |-  ( x  =  ( `' v
" ( _V  \  {  .0.  } ) )  ->  ( A. y
( y  C_  x  ->  y  e.  A )  <->  A. y ( y  C_  ( `' v " ( _V  \  {  .0.  }
) )  ->  y  e.  A ) ) )
6968rspcv 2880 . . . . . . 7  |-  ( ( `' v " ( _V  \  {  .0.  }
) )  e.  A  ->  ( A. x  e.  A  A. y ( y  C_  x  ->  y  e.  A )  ->  A. y ( y  C_  ( `' v " ( _V  \  {  .0.  }
) )  ->  y  e.  A ) ) )
7059, 65, 69sylc 56 . . . . . 6  |-  ( (
ph  /\  ( u  e.  ( Base `  R
)  /\  v  e.  U ) )  ->  A. y ( y  C_  ( `' v " ( _V  \  {  .0.  }
) )  ->  y  e.  A ) )
71 sseq1 3199 . . . . . . . 8  |-  ( y  =  ( `' ( u ( .s `  S ) v )
" ( _V  \  {  .0.  } ) )  ->  ( y  C_  ( `' v " ( _V  \  {  .0.  }
) )  <->  ( `' ( u ( .s
`  S ) v ) " ( _V 
\  {  .0.  }
) )  C_  ( `' v " ( _V  \  {  .0.  }
) ) ) )
72 eleq1 2343 . . . . . . . 8  |-  ( y  =  ( `' ( u ( .s `  S ) v )
" ( _V  \  {  .0.  } ) )  ->  ( y  e.  A  <->  ( `' ( u ( .s `  S ) v )
" ( _V  \  {  .0.  } ) )  e.  A ) )
7371, 72imbi12d 311 . . . . . . 7  |-  ( y  =  ( `' ( u ( .s `  S ) v )
" ( _V  \  {  .0.  } ) )  ->  ( ( y 
C_  ( `' v
" ( _V  \  {  .0.  } ) )  ->  y  e.  A
)  <->  ( ( `' ( u ( .s
`  S ) v ) " ( _V 
\  {  .0.  }
) )  C_  ( `' v " ( _V  \  {  .0.  }
) )  ->  ( `' ( u ( .s `  S ) v ) " ( _V  \  {  .0.  }
) )  e.  A
) ) )
7473spcgv 2868 . . . . . 6  |-  ( ( `' ( u ( .s `  S ) v ) " ( _V  \  {  .0.  }
) )  e.  _V  ->  ( A. y ( y  C_  ( `' v " ( _V  \  {  .0.  } ) )  ->  y  e.  A
)  ->  ( ( `' ( u ( .s `  S ) v ) " ( _V  \  {  .0.  }
) )  C_  ( `' v " ( _V  \  {  .0.  }
) )  ->  ( `' ( u ( .s `  S ) v ) " ( _V  \  {  .0.  }
) )  e.  A
) ) )
7561, 70, 58, 74syl3c 57 . . . . 5  |-  ( (
ph  /\  ( u  e.  ( Base `  R
)  /\  v  e.  U ) )  -> 
( `' ( u ( .s `  S
) v ) "
( _V  \  {  .0.  } ) )  e.  A )
7632eleq2d 2350 . . . . . 6  |-  ( (
ph  /\  ( u  e.  ( Base `  R
)  /\  v  e.  U ) )  -> 
( ( u ( .s `  S ) v )  e.  U  <->  ( u ( .s `  S ) v )  e.  { g  e.  B  |  ( `' g " ( _V 
\  {  .0.  }
) )  e.  A } ) )
77 cnveq 4855 . . . . . . . . 9  |-  ( g  =  ( u ( .s `  S ) v )  ->  `' g  =  `' (
u ( .s `  S ) v ) )
7877imaeq1d 5011 . . . . . . . 8  |-  ( g  =  ( u ( .s `  S ) v )  ->  ( `' g " ( _V  \  {  .0.  }
) )  =  ( `' ( u ( .s `  S ) v ) " ( _V  \  {  .0.  }
) ) )
7978eleq1d 2349 . . . . . . 7  |-  ( g  =  ( u ( .s `  S ) v )  ->  (
( `' g "
( _V  \  {  .0.  } ) )  e.  A  <->  ( `' ( u ( .s `  S ) v )
" ( _V  \  {  .0.  } ) )  e.  A ) )
8079elrab 2923 . . . . . 6  |-  ( ( u ( .s `  S ) v )  e.  { g  e.  B  |  ( `' g " ( _V 
\  {  .0.  }
) )  e.  A } 
<->  ( ( u ( .s `  S ) v )  e.  B  /\  ( `' ( u ( .s `  S
) v ) "
( _V  \  {  .0.  } ) )  e.  A ) )
8176, 80syl6bb 252 . . . . 5  |-  ( (
ph  /\  ( u  e.  ( Base `  R
)  /\  v  e.  U ) )  -> 
( ( u ( .s `  S ) v )  e.  U  <->  ( ( u ( .s
`  S ) v )  e.  B  /\  ( `' ( u ( .s `  S ) v ) " ( _V  \  {  .0.  }
) )  e.  A
) ) )
8241, 75, 81mpbir2and 888 . . . 4  |-  ( (
ph  /\  ( u  e.  ( Base `  R
)  /\  v  e.  U ) )  -> 
( u ( .s
`  S ) v )  e.  U )
83823adantr3 1116 . . 3  |-  ( (
ph  /\  ( u  e.  ( Base `  R
)  /\  v  e.  U  /\  w  e.  U
) )  ->  (
u ( .s `  S ) v )  e.  U )
84 simpr3 963 . . 3  |-  ( (
ph  /\  ( u  e.  ( Base `  R
)  /\  v  e.  U  /\  w  e.  U
) )  ->  w  e.  U )
85 eqid 2283 . . . 4  |-  ( +g  `  S )  =  ( +g  `  S )
8685subgcl 14631 . . 3  |-  ( ( U  e.  (SubGrp `  S )  /\  (
u ( .s `  S ) v )  e.  U  /\  w  e.  U )  ->  (
( u ( .s
`  S ) v ) ( +g  `  S
) w )  e.  U )
8726, 83, 84, 86syl3anc 1182 . 2  |-  ( (
ph  /\  ( u  e.  ( Base `  R
)  /\  v  e.  U  /\  w  e.  U
) )  ->  (
( u ( .s
`  S ) v ) ( +g  `  S
) w )  e.  U )
884, 5, 7, 8, 9, 10, 21, 25, 87islssd 15693 1  |-  ( ph  ->  U  e.  ( LSubSp `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934   A.wal 1527    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   {crab 2547   _Vcvv 2788    \ cdif 3149    u. cun 3150    C_ wss 3152   (/)c0 3455   {csn 3640   `'ccnv 4688   "cima 4692   ` cfv 5255  (class class class)co 5858    ^m cmap 6772   Fincfn 6863   NNcn 9746   NN0cn0 9965   Basecbs 13148   +g cplusg 13208   .rcmulr 13209   .scvsca 13212   0gc0g 13400   Grpcgrp 14362  SubGrpcsubg 14615   Ringcrg 15337   LSubSpclss 15689   mPwSer cmps 16087
This theorem is referenced by:  mpllss  16182
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-tset 13227  df-0g 13404  df-mnd 14367  df-grp 14489  df-minusg 14490  df-subg 14618  df-mgp 15326  df-rng 15340  df-lss 15690  df-psr 16098
  Copyright terms: Public domain W3C validator