MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplmon2mul Unicode version

Theorem mplmon2mul 16488
Description: Product of scaled monomials. (Contributed by Stefan O'Rear, 8-Mar-2015.)
Hypotheses
Ref Expression
mplmon2cl.p  |-  P  =  ( I mPoly  R )
mplmon2cl.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
mplmon2cl.z  |-  .0.  =  ( 0g `  R )
mplmon2cl.c  |-  C  =  ( Base `  R
)
mplmon2cl.i  |-  ( ph  ->  I  e.  W )
mplmon2mul.r  |-  ( ph  ->  R  e.  CRing )
mplmon2mul.t  |-  .xb  =  ( .r `  P )
mplmon2mul.u  |-  .x.  =  ( .r `  R )
mplmon2mul.x  |-  ( ph  ->  X  e.  D )
mplmon2mul.y  |-  ( ph  ->  Y  e.  D )
mplmon2mul.f  |-  ( ph  ->  F  e.  C )
mplmon2mul.g  |-  ( ph  ->  G  e.  C )
Assertion
Ref Expression
mplmon2mul  |-  ( ph  ->  ( ( y  e.  D  |->  if ( y  =  X ,  F ,  .0.  ) )  .xb  ( y  e.  D  |->  if ( y  =  Y ,  G ,  .0.  ) ) )  =  ( y  e.  D  |->  if ( y  =  ( X  o F  +  Y ) ,  ( F  .x.  G
) ,  .0.  )
) )
Distinct variable groups:    ph, y    y, C    y, D    y, F    y, G    f, I    y, R    y,  .x.    f, X, y   
f, Y, y    y,  .0.
Allowed substitution hints:    ph( f)    C( f)    D( f)    P( y, f)    R( f)    .xb ( y, f)    .x. ( f)    F( f)    G( f)    I( y)    W( y, f)    .0. ( f)

Proof of Theorem mplmon2mul
StepHypRef Expression
1 mplmon2cl.i . . . . 5  |-  ( ph  ->  I  e.  W )
2 mplmon2mul.r . . . . 5  |-  ( ph  ->  R  e.  CRing )
3 mplmon2cl.p . . . . . 6  |-  P  =  ( I mPoly  R )
43mplassa 16444 . . . . 5  |-  ( ( I  e.  W  /\  R  e.  CRing )  ->  P  e. AssAlg )
51, 2, 4syl2anc 643 . . . 4  |-  ( ph  ->  P  e. AssAlg )
6 mplmon2mul.f . . . . 5  |-  ( ph  ->  F  e.  C )
7 mplmon2cl.c . . . . . 6  |-  C  =  ( Base `  R
)
83, 1, 2mplsca 16435 . . . . . . 7  |-  ( ph  ->  R  =  (Scalar `  P ) )
98fveq2d 5672 . . . . . 6  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  (Scalar `  P )
) )
107, 9syl5eq 2431 . . . . 5  |-  ( ph  ->  C  =  ( Base `  (Scalar `  P )
) )
116, 10eleqtrd 2463 . . . 4  |-  ( ph  ->  F  e.  ( Base `  (Scalar `  P )
) )
12 eqid 2387 . . . . 5  |-  ( Base `  P )  =  (
Base `  P )
13 mplmon2cl.z . . . . 5  |-  .0.  =  ( 0g `  R )
14 eqid 2387 . . . . 5  |-  ( 1r
`  R )  =  ( 1r `  R
)
15 mplmon2cl.d . . . . 5  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
16 crngrng 15601 . . . . . 6  |-  ( R  e.  CRing  ->  R  e.  Ring )
172, 16syl 16 . . . . 5  |-  ( ph  ->  R  e.  Ring )
18 mplmon2mul.x . . . . 5  |-  ( ph  ->  X  e.  D )
193, 12, 13, 14, 15, 1, 17, 18mplmon 16453 . . . 4  |-  ( ph  ->  ( y  e.  D  |->  if ( y  =  X ,  ( 1r
`  R ) ,  .0.  ) )  e.  ( Base `  P
) )
20 assalmod 16306 . . . . . 6  |-  ( P  e. AssAlg  ->  P  e.  LMod )
215, 20syl 16 . . . . 5  |-  ( ph  ->  P  e.  LMod )
22 mplmon2mul.g . . . . . 6  |-  ( ph  ->  G  e.  C )
2322, 10eleqtrd 2463 . . . . 5  |-  ( ph  ->  G  e.  ( Base `  (Scalar `  P )
) )
24 mplmon2mul.y . . . . . 6  |-  ( ph  ->  Y  e.  D )
253, 12, 13, 14, 15, 1, 17, 24mplmon 16453 . . . . 5  |-  ( ph  ->  ( y  e.  D  |->  if ( y  =  Y ,  ( 1r
`  R ) ,  .0.  ) )  e.  ( Base `  P
) )
26 eqid 2387 . . . . . 6  |-  (Scalar `  P )  =  (Scalar `  P )
27 eqid 2387 . . . . . 6  |-  ( .s
`  P )  =  ( .s `  P
)
28 eqid 2387 . . . . . 6  |-  ( Base `  (Scalar `  P )
)  =  ( Base `  (Scalar `  P )
)
2912, 26, 27, 28lmodvscl 15894 . . . . 5  |-  ( ( P  e.  LMod  /\  G  e.  ( Base `  (Scalar `  P ) )  /\  ( y  e.  D  |->  if ( y  =  Y ,  ( 1r
`  R ) ,  .0.  ) )  e.  ( Base `  P
) )  ->  ( G ( .s `  P ) ( y  e.  D  |->  if ( y  =  Y , 
( 1r `  R
) ,  .0.  )
) )  e.  (
Base `  P )
)
3021, 23, 25, 29syl3anc 1184 . . . 4  |-  ( ph  ->  ( G ( .s
`  P ) ( y  e.  D  |->  if ( y  =  Y ,  ( 1r `  R ) ,  .0.  ) ) )  e.  ( Base `  P
) )
31 mplmon2mul.t . . . . 5  |-  .xb  =  ( .r `  P )
3212, 26, 28, 27, 31assaass 16304 . . . 4  |-  ( ( P  e. AssAlg  /\  ( F  e.  ( Base `  (Scalar `  P )
)  /\  ( y  e.  D  |->  if ( y  =  X , 
( 1r `  R
) ,  .0.  )
)  e.  ( Base `  P )  /\  ( G ( .s `  P ) ( y  e.  D  |->  if ( y  =  Y , 
( 1r `  R
) ,  .0.  )
) )  e.  (
Base `  P )
) )  ->  (
( F ( .s
`  P ) ( y  e.  D  |->  if ( y  =  X ,  ( 1r `  R ) ,  .0.  ) ) )  .xb  ( G ( .s `  P ) ( y  e.  D  |->  if ( y  =  Y , 
( 1r `  R
) ,  .0.  )
) ) )  =  ( F ( .s
`  P ) ( ( y  e.  D  |->  if ( y  =  X ,  ( 1r
`  R ) ,  .0.  ) )  .xb  ( G ( .s `  P ) ( y  e.  D  |->  if ( y  =  Y , 
( 1r `  R
) ,  .0.  )
) ) ) ) )
335, 11, 19, 30, 32syl13anc 1186 . . 3  |-  ( ph  ->  ( ( F ( .s `  P ) ( y  e.  D  |->  if ( y  =  X ,  ( 1r
`  R ) ,  .0.  ) ) ) 
.xb  ( G ( .s `  P ) ( y  e.  D  |->  if ( y  =  Y ,  ( 1r
`  R ) ,  .0.  ) ) ) )  =  ( F ( .s `  P
) ( ( y  e.  D  |->  if ( y  =  X , 
( 1r `  R
) ,  .0.  )
)  .xb  ( G
( .s `  P
) ( y  e.  D  |->  if ( y  =  Y ,  ( 1r `  R ) ,  .0.  ) ) ) ) ) )
3412, 26, 28, 27, 31assaassr 16305 . . . . 5  |-  ( ( P  e. AssAlg  /\  ( G  e.  ( Base `  (Scalar `  P )
)  /\  ( y  e.  D  |->  if ( y  =  X , 
( 1r `  R
) ,  .0.  )
)  e.  ( Base `  P )  /\  (
y  e.  D  |->  if ( y  =  Y ,  ( 1r `  R ) ,  .0.  ) )  e.  (
Base `  P )
) )  ->  (
( y  e.  D  |->  if ( y  =  X ,  ( 1r
`  R ) ,  .0.  ) )  .xb  ( G ( .s `  P ) ( y  e.  D  |->  if ( y  =  Y , 
( 1r `  R
) ,  .0.  )
) ) )  =  ( G ( .s
`  P ) ( ( y  e.  D  |->  if ( y  =  X ,  ( 1r
`  R ) ,  .0.  ) )  .xb  ( y  e.  D  |->  if ( y  =  Y ,  ( 1r
`  R ) ,  .0.  ) ) ) ) )
355, 23, 19, 25, 34syl13anc 1186 . . . 4  |-  ( ph  ->  ( ( y  e.  D  |->  if ( y  =  X ,  ( 1r `  R ) ,  .0.  ) ) 
.xb  ( G ( .s `  P ) ( y  e.  D  |->  if ( y  =  Y ,  ( 1r
`  R ) ,  .0.  ) ) ) )  =  ( G ( .s `  P
) ( ( y  e.  D  |->  if ( y  =  X , 
( 1r `  R
) ,  .0.  )
)  .xb  ( y  e.  D  |->  if ( y  =  Y , 
( 1r `  R
) ,  .0.  )
) ) ) )
3635oveq2d 6036 . . 3  |-  ( ph  ->  ( F ( .s
`  P ) ( ( y  e.  D  |->  if ( y  =  X ,  ( 1r
`  R ) ,  .0.  ) )  .xb  ( G ( .s `  P ) ( y  e.  D  |->  if ( y  =  Y , 
( 1r `  R
) ,  .0.  )
) ) ) )  =  ( F ( .s `  P ) ( G ( .s
`  P ) ( ( y  e.  D  |->  if ( y  =  X ,  ( 1r
`  R ) ,  .0.  ) )  .xb  ( y  e.  D  |->  if ( y  =  Y ,  ( 1r
`  R ) ,  .0.  ) ) ) ) ) )
373, 12, 13, 14, 15, 1, 17, 18, 31, 24mplmonmul 16454 . . . . . 6  |-  ( ph  ->  ( ( y  e.  D  |->  if ( y  =  X ,  ( 1r `  R ) ,  .0.  ) ) 
.xb  ( y  e.  D  |->  if ( y  =  Y ,  ( 1r `  R ) ,  .0.  ) ) )  =  ( y  e.  D  |->  if ( y  =  ( X  o F  +  Y
) ,  ( 1r
`  R ) ,  .0.  ) ) )
3837oveq2d 6036 . . . . 5  |-  ( ph  ->  ( G ( .s
`  P ) ( ( y  e.  D  |->  if ( y  =  X ,  ( 1r
`  R ) ,  .0.  ) )  .xb  ( y  e.  D  |->  if ( y  =  Y ,  ( 1r
`  R ) ,  .0.  ) ) ) )  =  ( G ( .s `  P
) ( y  e.  D  |->  if ( y  =  ( X  o F  +  Y ) ,  ( 1r `  R ) ,  .0.  ) ) ) )
3938oveq2d 6036 . . . 4  |-  ( ph  ->  ( F ( .s
`  P ) ( G ( .s `  P ) ( ( y  e.  D  |->  if ( y  =  X ,  ( 1r `  R ) ,  .0.  ) )  .xb  (
y  e.  D  |->  if ( y  =  Y ,  ( 1r `  R ) ,  .0.  ) ) ) ) )  =  ( F ( .s `  P
) ( G ( .s `  P ) ( y  e.  D  |->  if ( y  =  ( X  o F  +  Y ) ,  ( 1r `  R
) ,  .0.  )
) ) ) )
4015psrbagaddcl 16362 . . . . . . 7  |-  ( ( I  e.  W  /\  X  e.  D  /\  Y  e.  D )  ->  ( X  o F  +  Y )  e.  D )
411, 18, 24, 40syl3anc 1184 . . . . . 6  |-  ( ph  ->  ( X  o F  +  Y )  e.  D )
423, 12, 13, 14, 15, 1, 17, 41mplmon 16453 . . . . 5  |-  ( ph  ->  ( y  e.  D  |->  if ( y  =  ( X  o F  +  Y ) ,  ( 1r `  R
) ,  .0.  )
)  e.  ( Base `  P ) )
43 eqid 2387 . . . . . 6  |-  ( .r
`  (Scalar `  P )
)  =  ( .r
`  (Scalar `  P )
)
4412, 26, 27, 28, 43lmodvsass 15902 . . . . 5  |-  ( ( P  e.  LMod  /\  ( F  e.  ( Base `  (Scalar `  P )
)  /\  G  e.  ( Base `  (Scalar `  P
) )  /\  (
y  e.  D  |->  if ( y  =  ( X  o F  +  Y ) ,  ( 1r `  R ) ,  .0.  ) )  e.  ( Base `  P
) ) )  -> 
( ( F ( .r `  (Scalar `  P ) ) G ) ( .s `  P ) ( y  e.  D  |->  if ( y  =  ( X  o F  +  Y
) ,  ( 1r
`  R ) ,  .0.  ) ) )  =  ( F ( .s `  P ) ( G ( .s
`  P ) ( y  e.  D  |->  if ( y  =  ( X  o F  +  Y ) ,  ( 1r `  R ) ,  .0.  ) ) ) ) )
4521, 11, 23, 42, 44syl13anc 1186 . . . 4  |-  ( ph  ->  ( ( F ( .r `  (Scalar `  P ) ) G ) ( .s `  P ) ( y  e.  D  |->  if ( y  =  ( X  o F  +  Y
) ,  ( 1r
`  R ) ,  .0.  ) ) )  =  ( F ( .s `  P ) ( G ( .s
`  P ) ( y  e.  D  |->  if ( y  =  ( X  o F  +  Y ) ,  ( 1r `  R ) ,  .0.  ) ) ) ) )
46 mplmon2mul.u . . . . . . 7  |-  .x.  =  ( .r `  R )
478fveq2d 5672 . . . . . . 7  |-  ( ph  ->  ( .r `  R
)  =  ( .r
`  (Scalar `  P )
) )
4846, 47syl5req 2432 . . . . . 6  |-  ( ph  ->  ( .r `  (Scalar `  P ) )  = 
.x.  )
4948oveqd 6037 . . . . 5  |-  ( ph  ->  ( F ( .r
`  (Scalar `  P )
) G )  =  ( F  .x.  G
) )
5049oveq1d 6035 . . . 4  |-  ( ph  ->  ( ( F ( .r `  (Scalar `  P ) ) G ) ( .s `  P ) ( y  e.  D  |->  if ( y  =  ( X  o F  +  Y
) ,  ( 1r
`  R ) ,  .0.  ) ) )  =  ( ( F 
.x.  G ) ( .s `  P ) ( y  e.  D  |->  if ( y  =  ( X  o F  +  Y ) ,  ( 1r `  R
) ,  .0.  )
) ) )
5139, 45, 503eqtr2d 2425 . . 3  |-  ( ph  ->  ( F ( .s
`  P ) ( G ( .s `  P ) ( ( y  e.  D  |->  if ( y  =  X ,  ( 1r `  R ) ,  .0.  ) )  .xb  (
y  e.  D  |->  if ( y  =  Y ,  ( 1r `  R ) ,  .0.  ) ) ) ) )  =  ( ( F  .x.  G ) ( .s `  P
) ( y  e.  D  |->  if ( y  =  ( X  o F  +  Y ) ,  ( 1r `  R ) ,  .0.  ) ) ) )
5233, 36, 513eqtrd 2423 . 2  |-  ( ph  ->  ( ( F ( .s `  P ) ( y  e.  D  |->  if ( y  =  X ,  ( 1r
`  R ) ,  .0.  ) ) ) 
.xb  ( G ( .s `  P ) ( y  e.  D  |->  if ( y  =  Y ,  ( 1r
`  R ) ,  .0.  ) ) ) )  =  ( ( F  .x.  G ) ( .s `  P
) ( y  e.  D  |->  if ( y  =  ( X  o F  +  Y ) ,  ( 1r `  R ) ,  .0.  ) ) ) )
533, 27, 15, 14, 13, 7, 1, 17, 18, 6mplmon2 16480 . . 3  |-  ( ph  ->  ( F ( .s
`  P ) ( y  e.  D  |->  if ( y  =  X ,  ( 1r `  R ) ,  .0.  ) ) )  =  ( y  e.  D  |->  if ( y  =  X ,  F ,  .0.  ) ) )
543, 27, 15, 14, 13, 7, 1, 17, 24, 22mplmon2 16480 . . 3  |-  ( ph  ->  ( G ( .s
`  P ) ( y  e.  D  |->  if ( y  =  Y ,  ( 1r `  R ) ,  .0.  ) ) )  =  ( y  e.  D  |->  if ( y  =  Y ,  G ,  .0.  ) ) )
5553, 54oveq12d 6038 . 2  |-  ( ph  ->  ( ( F ( .s `  P ) ( y  e.  D  |->  if ( y  =  X ,  ( 1r
`  R ) ,  .0.  ) ) ) 
.xb  ( G ( .s `  P ) ( y  e.  D  |->  if ( y  =  Y ,  ( 1r
`  R ) ,  .0.  ) ) ) )  =  ( ( y  e.  D  |->  if ( y  =  X ,  F ,  .0.  ) )  .xb  (
y  e.  D  |->  if ( y  =  Y ,  G ,  .0.  ) ) ) )
567, 46rngcl 15604 . . . 4  |-  ( ( R  e.  Ring  /\  F  e.  C  /\  G  e.  C )  ->  ( F  .x.  G )  e.  C )
5717, 6, 22, 56syl3anc 1184 . . 3  |-  ( ph  ->  ( F  .x.  G
)  e.  C )
583, 27, 15, 14, 13, 7, 1, 17, 41, 57mplmon2 16480 . 2  |-  ( ph  ->  ( ( F  .x.  G ) ( .s
`  P ) ( y  e.  D  |->  if ( y  =  ( X  o F  +  Y ) ,  ( 1r `  R ) ,  .0.  ) ) )  =  ( y  e.  D  |->  if ( y  =  ( X  o F  +  Y
) ,  ( F 
.x.  G ) ,  .0.  ) ) )
5952, 55, 583eqtr3d 2427 1  |-  ( ph  ->  ( ( y  e.  D  |->  if ( y  =  X ,  F ,  .0.  ) )  .xb  ( y  e.  D  |->  if ( y  =  Y ,  G ,  .0.  ) ) )  =  ( y  e.  D  |->  if ( y  =  ( X  o F  +  Y ) ,  ( F  .x.  G
) ,  .0.  )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1717   {crab 2653   ifcif 3682    e. cmpt 4207   `'ccnv 4817   "cima 4821   ` cfv 5394  (class class class)co 6020    o Fcof 6242    ^m cmap 6954   Fincfn 7045    + caddc 8926   NNcn 9932   NN0cn0 10153   Basecbs 13396   .rcmulr 13457  Scalarcsca 13459   .scvsca 13460   0gc0g 13650   Ringcrg 15587   CRingccrg 15588   1rcur 15589   LModclmod 15877  AssAlgcasa 16296   mPoly cmpl 16335
This theorem is referenced by:  evlslem2  16495
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-ofr 6245  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-2o 6661  df-oadd 6664  df-er 6841  df-map 6956  df-pm 6957  df-ixp 7000  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-oi 7412  df-card 7759  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-7 9995  df-8 9996  df-9 9997  df-n0 10154  df-z 10215  df-uz 10421  df-fz 10976  df-fzo 11066  df-seq 11251  df-hash 11546  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-mulr 13470  df-sca 13472  df-vsca 13473  df-tset 13475  df-0g 13654  df-gsum 13655  df-mre 13738  df-mrc 13739  df-acs 13741  df-mnd 14617  df-mhm 14665  df-submnd 14666  df-grp 14739  df-minusg 14740  df-sbg 14741  df-mulg 14742  df-subg 14868  df-ghm 14931  df-cntz 15043  df-cmn 15341  df-abl 15342  df-mgp 15576  df-rng 15590  df-cring 15591  df-ur 15592  df-subrg 15793  df-lmod 15879  df-lss 15936  df-assa 16299  df-psr 16344  df-mpl 16346
  Copyright terms: Public domain W3C validator