MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplmul Unicode version

Theorem mplmul 16203
Description: The multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypotheses
Ref Expression
mplmul.p  |-  P  =  ( I mPoly  R )
mplmul.b  |-  B  =  ( Base `  P
)
mplmul.m  |-  .x.  =  ( .r `  R )
mplmul.t  |-  .xb  =  ( .r `  P )
mplmul.d  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
mplmul.f  |-  ( ph  ->  F  e.  B )
mplmul.g  |-  ( ph  ->  G  e.  B )
Assertion
Ref Expression
mplmul  |-  ( ph  ->  ( F  .xb  G
)  =  ( k  e.  D  |->  ( R 
gsumg  ( x  e.  { y  e.  D  |  y  o R  <_  k }  |->  ( ( F `
 x )  .x.  ( G `  ( k  o F  -  x
) ) ) ) ) ) )
Distinct variable groups:    x, k,
y, D    k, F, x    k, G, x    h, k, x, y, I    ph, k, x    .x. , k, x    R, k, x
Allowed substitution hints:    ph( y, h)    B( x, y, h, k)    D( h)    P( x, y, h, k)    R( y, h)    .xb ( x, y, h, k)    .x. ( y, h)    F( y, h)    G( y, h)

Proof of Theorem mplmul
StepHypRef Expression
1 eqid 2296 . 2  |-  ( I mPwSer  R )  =  ( I mPwSer  R )
2 eqid 2296 . 2  |-  ( Base `  ( I mPwSer  R ) )  =  ( Base `  ( I mPwSer  R ) )
3 mplmul.m . 2  |-  .x.  =  ( .r `  R )
4 mplmul.t . . 3  |-  .xb  =  ( .r `  P )
5 mplmul.b . . . . 5  |-  B  =  ( Base `  P
)
6 fvex 5555 . . . . 5  |-  ( Base `  P )  e.  _V
75, 6eqeltri 2366 . . . 4  |-  B  e. 
_V
8 mplmul.p . . . . . 6  |-  P  =  ( I mPoly  R )
98, 1, 5mplval2 16192 . . . . 5  |-  P  =  ( ( I mPwSer  R
)s 
B )
10 eqid 2296 . . . . 5  |-  ( .r
`  ( I mPwSer  R
) )  =  ( .r `  ( I mPwSer  R ) )
119, 10ressmulr 13277 . . . 4  |-  ( B  e.  _V  ->  ( .r `  ( I mPwSer  R
) )  =  ( .r `  P ) )
127, 11ax-mp 8 . . 3  |-  ( .r
`  ( I mPwSer  R
) )  =  ( .r `  P )
134, 12eqtr4i 2319 . 2  |-  .xb  =  ( .r `  ( I mPwSer  R ) )
14 mplmul.d . 2  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
158, 1, 5, 2mplbasss 16193 . . 3  |-  B  C_  ( Base `  ( I mPwSer  R ) )
16 mplmul.f . . 3  |-  ( ph  ->  F  e.  B )
1715, 16sseldi 3191 . 2  |-  ( ph  ->  F  e.  ( Base `  ( I mPwSer  R ) ) )
18 mplmul.g . . 3  |-  ( ph  ->  G  e.  B )
1915, 18sseldi 3191 . 2  |-  ( ph  ->  G  e.  ( Base `  ( I mPwSer  R ) ) )
201, 2, 3, 13, 14, 17, 19psrmulfval 16146 1  |-  ( ph  ->  ( F  .xb  G
)  =  ( k  e.  D  |->  ( R 
gsumg  ( x  e.  { y  e.  D  |  y  o R  <_  k }  |->  ( ( F `
 x )  .x.  ( G `  ( k  o F  -  x
) ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696   {crab 2560   _Vcvv 2801   class class class wbr 4039    e. cmpt 4093   `'ccnv 4704   "cima 4708   ` cfv 5271  (class class class)co 5874    o Fcof 6092    o Rcofr 6093    ^m cmap 6788   Fincfn 6879    <_ cle 8884    - cmin 9053   NNcn 9762   NN0cn0 9981   Basecbs 13164   .rcmulr 13225    gsumg cgsu 13417   mPwSer cmps 16103   mPoly cmpl 16105
This theorem is referenced by:  mplmonmul  16224  mdegmullem  19480
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-sca 13240  df-vsca 13241  df-tset 13243  df-psr 16114  df-mpl 16116
  Copyright terms: Public domain W3C validator