Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpt2eq123i Structured version   Unicode version

Theorem mpt2eq123i 6140
 Description: An equality inference for the maps to notation. (Contributed by NM, 15-Jul-2013.)
Hypotheses
Ref Expression
mpt2eq123i.1
mpt2eq123i.2
mpt2eq123i.3
Assertion
Ref Expression
mpt2eq123i

Proof of Theorem mpt2eq123i
StepHypRef Expression
1 mpt2eq123i.1 . . . 4
21a1i 11 . . 3
3 mpt2eq123i.2 . . . 4
43a1i 11 . . 3
5 mpt2eq123i.3 . . . 4
65a1i 11 . . 3
72, 4, 6mpt2eq123dv 6139 . 2
87trud 1333 1
 Colors of variables: wff set class Syntax hints:   wtru 1326   wceq 1653   cmpt2 6086 This theorem is referenced by:  ofmres  6346  seqval  11339  oppgtmd  18132  sdc  26462  mendvscafval  27489  tgrpset  31616 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-oprab 6088  df-mpt2 6089
 Copyright terms: Public domain W3C validator