MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpt2fun Unicode version

Theorem mpt2fun 5962
Description: The maps-to notation for an operation is always a function. (Contributed by Scott Fenton, 21-Mar-2012.)
Hypothesis
Ref Expression
mpt2fun.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
mpt2fun  |-  Fun  F
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y)    F( x, y)

Proof of Theorem mpt2fun
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqtr3 2315 . . . . . 6  |-  ( ( z  =  C  /\  w  =  C )  ->  z  =  w )
21ad2ant2l 726 . . . . 5  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  /\  (
( x  e.  A  /\  y  e.  B
)  /\  w  =  C ) )  -> 
z  =  w )
32gen2 1537 . . . 4  |-  A. z A. w ( ( ( ( x  e.  A  /\  y  e.  B
)  /\  z  =  C )  /\  (
( x  e.  A  /\  y  e.  B
)  /\  w  =  C ) )  -> 
z  =  w )
4 eqeq1 2302 . . . . . 6  |-  ( z  =  w  ->  (
z  =  C  <->  w  =  C ) )
54anbi2d 684 . . . . 5  |-  ( z  =  w  ->  (
( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  w  =  C
) ) )
65mo4 2189 . . . 4  |-  ( E* z ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  A. z A. w ( ( ( ( x  e.  A  /\  y  e.  B
)  /\  z  =  C )  /\  (
( x  e.  A  /\  y  e.  B
)  /\  w  =  C ) )  -> 
z  =  w ) )
73, 6mpbir 200 . . 3  |-  E* z
( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )
87funoprab 5960 . 2  |-  Fun  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
9 mpt2fun.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
10 df-mpt2 5879 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
119, 10eqtri 2316 . . 3  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
1211funeqi 5291 . 2  |-  ( Fun 
F  <->  Fun  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) } )
138, 12mpbir 200 1  |-  Fun  F
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   A.wal 1530    = wceq 1632    e. wcel 1696   E*wmo 2157   Fun wfun 5265   {coprab 5875    e. cmpt2 5876
This theorem is referenced by:  ofexg  6098  mpt2exxg  6211  imasvscafn  13455  coapm  13919  oppglsm  14969  xkococnlem  17369  tpr2rico  23311  elunirnmbfm  23573  aovmpt4g  28169
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-fun 5273  df-oprab 5878  df-mpt2 5879
  Copyright terms: Public domain W3C validator