MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpt2mpt Unicode version

Theorem mpt2mpt 6097
Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013.) (Revised by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
mpt2mpt.1  |-  ( z  =  <. x ,  y
>.  ->  C  =  D )
Assertion
Ref Expression
mpt2mpt  |-  ( z  e.  ( A  X.  B )  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )
Distinct variable groups:    x, y,
z, A    y, B, z    x, C, y    z, D    x, B
Allowed substitution hints:    C( z)    D( x, y)

Proof of Theorem mpt2mpt
StepHypRef Expression
1 iunxpconst 4867 . . 3  |-  U_ x  e.  A  ( {
x }  X.  B
)  =  ( A  X.  B )
2 mpteq1 4223 . . 3  |-  ( U_ x  e.  A  ( { x }  X.  B )  =  ( A  X.  B )  ->  ( z  e. 
U_ x  e.  A  ( { x }  X.  B )  |->  C )  =  ( z  e.  ( A  X.  B
)  |->  C ) )
31, 2ax-mp 8 . 2  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  C )  =  ( z  e.  ( A  X.  B )  |->  C )
4 mpt2mpt.1 . . 3  |-  ( z  =  <. x ,  y
>.  ->  C  =  D )
54mpt2mptx 6096 . 2  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )
63, 5eqtr3i 2402 1  |-  ( z  e.  ( A  X.  B )  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649   {csn 3750   <.cop 3753   U_ciun 4028    e. cmpt 4200    X. cxp 4809    e. cmpt2 6015
This theorem is referenced by:  fnov  6110  fmpt2co  6362  xpf1o  7198  resfval2  14010  catcisolem  14181  xpccatid  14205  curf2ndf  14264  evlslem4  16484  txbas  17513  cnmpt1st  17614  cnmpt2nd  17615  cnmpt2c  17616  cnmpt2t  17619  txhmeo  17749  txswaphmeolem  17750  ptuncnv  17753  ptunhmeo  17754  xpstopnlem1  17755  xkohmeo  17761  prdstmdd  18067  ucnimalem  18224  fmucndlem  18235  fsum2cn  18765
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pr 4337
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-sn 3756  df-pr 3757  df-op 3759  df-iun 4030  df-opab 4201  df-mpt 4202  df-xp 4817  df-rel 4818  df-oprab 6017  df-mpt2 6018
  Copyright terms: Public domain W3C validator