MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpt2mpt Unicode version

Theorem mpt2mpt 5955
Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013.) (Revised by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
mpt2mpt.1  |-  ( z  =  <. x ,  y
>.  ->  C  =  D )
Assertion
Ref Expression
mpt2mpt  |-  ( z  e.  ( A  X.  B )  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )
Distinct variable groups:    x, y,
z, A    y, B, z    x, C, y    z, D    x, B
Allowed substitution hints:    C( z)    D( x, y)

Proof of Theorem mpt2mpt
StepHypRef Expression
1 iunxpconst 4762 . . 3  |-  U_ x  e.  A  ( {
x }  X.  B
)  =  ( A  X.  B )
2 mpteq1 4116 . . 3  |-  ( U_ x  e.  A  ( { x }  X.  B )  =  ( A  X.  B )  ->  ( z  e. 
U_ x  e.  A  ( { x }  X.  B )  |->  C )  =  ( z  e.  ( A  X.  B
)  |->  C ) )
31, 2ax-mp 8 . 2  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  C )  =  ( z  e.  ( A  X.  B )  |->  C )
4 mpt2mpt.1 . . 3  |-  ( z  =  <. x ,  y
>.  ->  C  =  D )
54mpt2mptx 5954 . 2  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )
63, 5eqtr3i 2318 1  |-  ( z  e.  ( A  X.  B )  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632   {csn 3653   <.cop 3656   U_ciun 3921    e. cmpt 4093    X. cxp 4703    e. cmpt2 5876
This theorem is referenced by:  fnov  5968  fmpt2co  6218  xpf1o  7039  resfval2  13783  catcisolem  13954  xpccatid  13978  curf2ndf  14037  evlslem4  16261  txbas  17278  cnmpt1st  17378  cnmpt2nd  17379  cnmpt2c  17380  cnmpt2t  17383  txhmeo  17510  txswaphmeolem  17511  ptuncnv  17514  ptunhmeo  17515  xpstopnlem1  17516  xkohmeo  17522  prdstmdd  17822  fsum2cn  18391
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-iun 3923  df-opab 4094  df-mpt 4095  df-xp 4711  df-rel 4712  df-oprab 5878  df-mpt2 5879
  Copyright terms: Public domain W3C validator