MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptelixpg Unicode version

Theorem mptelixpg 6869
Description: Condition for an explicit member of an indexed product. (Contributed by Stefan O'Rear, 4-Jan-2015.)
Assertion
Ref Expression
mptelixpg  |-  ( I  e.  V  ->  (
( x  e.  I  |->  J )  e.  X_ x  e.  I  K  <->  A. x  e.  I  J  e.  K ) )
Distinct variable group:    x, I
Allowed substitution hints:    J( x)    K( x)    V( x)

Proof of Theorem mptelixpg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elex 2809 . 2  |-  ( I  e.  V  ->  I  e.  _V )
2 nfcv 2432 . . . . . 6  |-  F/_ y K
3 nfcsb1v 3126 . . . . . 6  |-  F/_ x [_ y  /  x ]_ K
4 csbeq1a 3102 . . . . . 6  |-  ( x  =  y  ->  K  =  [_ y  /  x ]_ K )
52, 3, 4cbvixp 6849 . . . . 5  |-  X_ x  e.  I  K  =  X_ y  e.  I  [_ y  /  x ]_ K
65eleq2i 2360 . . . 4  |-  ( ( x  e.  I  |->  J )  e.  X_ x  e.  I  K  <->  ( x  e.  I  |->  J )  e.  X_ y  e.  I  [_ y  /  x ]_ K )
7 elixp2 6836 . . . 4  |-  ( ( x  e.  I  |->  J )  e.  X_ y  e.  I  [_ y  /  x ]_ K  <->  ( (
x  e.  I  |->  J )  e.  _V  /\  ( x  e.  I  |->  J )  Fn  I  /\  A. y  e.  I 
( ( x  e.  I  |->  J ) `  y )  e.  [_ y  /  x ]_ K
) )
8 3anass 938 . . . 4  |-  ( ( ( x  e.  I  |->  J )  e.  _V  /\  ( x  e.  I  |->  J )  Fn  I  /\  A. y  e.  I 
( ( x  e.  I  |->  J ) `  y )  e.  [_ y  /  x ]_ K
)  <->  ( ( x  e.  I  |->  J )  e.  _V  /\  (
( x  e.  I  |->  J )  Fn  I  /\  A. y  e.  I 
( ( x  e.  I  |->  J ) `  y )  e.  [_ y  /  x ]_ K
) ) )
96, 7, 83bitri 262 . . 3  |-  ( ( x  e.  I  |->  J )  e.  X_ x  e.  I  K  <->  ( (
x  e.  I  |->  J )  e.  _V  /\  ( ( x  e.  I  |->  J )  Fn  I  /\  A. y  e.  I  ( (
x  e.  I  |->  J ) `  y )  e.  [_ y  /  x ]_ K ) ) )
10 eqid 2296 . . . . . . . 8  |-  ( x  e.  I  |->  J )  =  ( x  e.  I  |->  J )
1110fnmpt 5386 . . . . . . 7  |-  ( A. x  e.  I  J  e.  K  ->  ( x  e.  I  |->  J )  Fn  I )
1210fvmpt2 5624 . . . . . . . . 9  |-  ( ( x  e.  I  /\  J  e.  K )  ->  ( ( x  e.  I  |->  J ) `  x )  =  J )
13 simpr 447 . . . . . . . . 9  |-  ( ( x  e.  I  /\  J  e.  K )  ->  J  e.  K )
1412, 13eqeltrd 2370 . . . . . . . 8  |-  ( ( x  e.  I  /\  J  e.  K )  ->  ( ( x  e.  I  |->  J ) `  x )  e.  K
)
1514ralimiaa 2630 . . . . . . 7  |-  ( A. x  e.  I  J  e.  K  ->  A. x  e.  I  ( (
x  e.  I  |->  J ) `  x )  e.  K )
1611, 15jca 518 . . . . . 6  |-  ( A. x  e.  I  J  e.  K  ->  ( ( x  e.  I  |->  J )  Fn  I  /\  A. x  e.  I  ( ( x  e.  I  |->  J ) `  x
)  e.  K ) )
17 dffn2 5406 . . . . . . . 8  |-  ( ( x  e.  I  |->  J )  Fn  I  <->  ( x  e.  I  |->  J ) : I --> _V )
1810fmpt 5697 . . . . . . . . 9  |-  ( A. x  e.  I  J  e.  _V  <->  ( x  e.  I  |->  J ) : I --> _V )
1910fvmpt2 5624 . . . . . . . . . . . . 13  |-  ( ( x  e.  I  /\  J  e.  _V )  ->  ( ( x  e.  I  |->  J ) `  x )  =  J )
2019eleq1d 2362 . . . . . . . . . . . 12  |-  ( ( x  e.  I  /\  J  e.  _V )  ->  ( ( ( x  e.  I  |->  J ) `
 x )  e.  K  <->  J  e.  K
) )
2120biimpd 198 . . . . . . . . . . 11  |-  ( ( x  e.  I  /\  J  e.  _V )  ->  ( ( ( x  e.  I  |->  J ) `
 x )  e.  K  ->  J  e.  K ) )
2221ralimiaa 2630 . . . . . . . . . 10  |-  ( A. x  e.  I  J  e.  _V  ->  A. x  e.  I  ( (
( x  e.  I  |->  J ) `  x
)  e.  K  ->  J  e.  K )
)
23 ralim 2627 . . . . . . . . . 10  |-  ( A. x  e.  I  (
( ( x  e.  I  |->  J ) `  x )  e.  K  ->  J  e.  K )  ->  ( A. x  e.  I  ( (
x  e.  I  |->  J ) `  x )  e.  K  ->  A. x  e.  I  J  e.  K ) )
2422, 23syl 15 . . . . . . . . 9  |-  ( A. x  e.  I  J  e.  _V  ->  ( A. x  e.  I  (
( x  e.  I  |->  J ) `  x
)  e.  K  ->  A. x  e.  I  J  e.  K )
)
2518, 24sylbir 204 . . . . . . . 8  |-  ( ( x  e.  I  |->  J ) : I --> _V  ->  ( A. x  e.  I 
( ( x  e.  I  |->  J ) `  x )  e.  K  ->  A. x  e.  I  J  e.  K )
)
2617, 25sylbi 187 . . . . . . 7  |-  ( ( x  e.  I  |->  J )  Fn  I  -> 
( A. x  e.  I  ( ( x  e.  I  |->  J ) `
 x )  e.  K  ->  A. x  e.  I  J  e.  K ) )
2726imp 418 . . . . . 6  |-  ( ( ( x  e.  I  |->  J )  Fn  I  /\  A. x  e.  I 
( ( x  e.  I  |->  J ) `  x )  e.  K
)  ->  A. x  e.  I  J  e.  K )
2816, 27impbii 180 . . . . 5  |-  ( A. x  e.  I  J  e.  K  <->  ( ( x  e.  I  |->  J )  Fn  I  /\  A. x  e.  I  (
( x  e.  I  |->  J ) `  x
)  e.  K ) )
29 nfv 1609 . . . . . . 7  |-  F/ y ( ( x  e.  I  |->  J ) `  x )  e.  K
30 nfmpt1 4125 . . . . . . . . 9  |-  F/_ x
( x  e.  I  |->  J )
31 nfcv 2432 . . . . . . . . 9  |-  F/_ x
y
3230, 31nffv 5548 . . . . . . . 8  |-  F/_ x
( ( x  e.  I  |->  J ) `  y )
3332, 3nfel 2440 . . . . . . 7  |-  F/ x
( ( x  e.  I  |->  J ) `  y )  e.  [_ y  /  x ]_ K
34 fveq2 5541 . . . . . . . 8  |-  ( x  =  y  ->  (
( x  e.  I  |->  J ) `  x
)  =  ( ( x  e.  I  |->  J ) `  y ) )
3534, 4eleq12d 2364 . . . . . . 7  |-  ( x  =  y  ->  (
( ( x  e.  I  |->  J ) `  x )  e.  K  <->  ( ( x  e.  I  |->  J ) `  y
)  e.  [_ y  /  x ]_ K ) )
3629, 33, 35cbvral 2773 . . . . . 6  |-  ( A. x  e.  I  (
( x  e.  I  |->  J ) `  x
)  e.  K  <->  A. y  e.  I  ( (
x  e.  I  |->  J ) `  y )  e.  [_ y  /  x ]_ K )
3736anbi2i 675 . . . . 5  |-  ( ( ( x  e.  I  |->  J )  Fn  I  /\  A. x  e.  I 
( ( x  e.  I  |->  J ) `  x )  e.  K
)  <->  ( ( x  e.  I  |->  J )  Fn  I  /\  A. y  e.  I  (
( x  e.  I  |->  J ) `  y
)  e.  [_ y  /  x ]_ K ) )
3828, 37bitri 240 . . . 4  |-  ( A. x  e.  I  J  e.  K  <->  ( ( x  e.  I  |->  J )  Fn  I  /\  A. y  e.  I  (
( x  e.  I  |->  J ) `  y
)  e.  [_ y  /  x ]_ K ) )
39 mptexg 5761 . . . . 5  |-  ( I  e.  _V  ->  (
x  e.  I  |->  J )  e.  _V )
4039biantrurd 494 . . . 4  |-  ( I  e.  _V  ->  (
( ( x  e.  I  |->  J )  Fn  I  /\  A. y  e.  I  ( (
x  e.  I  |->  J ) `  y )  e.  [_ y  /  x ]_ K )  <->  ( (
x  e.  I  |->  J )  e.  _V  /\  ( ( x  e.  I  |->  J )  Fn  I  /\  A. y  e.  I  ( (
x  e.  I  |->  J ) `  y )  e.  [_ y  /  x ]_ K ) ) ) )
4138, 40syl5rbb 249 . . 3  |-  ( I  e.  _V  ->  (
( ( x  e.  I  |->  J )  e. 
_V  /\  ( (
x  e.  I  |->  J )  Fn  I  /\  A. y  e.  I  ( ( x  e.  I  |->  J ) `  y
)  e.  [_ y  /  x ]_ K ) )  <->  A. x  e.  I  J  e.  K )
)
429, 41syl5bb 248 . 2  |-  ( I  e.  _V  ->  (
( x  e.  I  |->  J )  e.  X_ x  e.  I  K  <->  A. x  e.  I  J  e.  K ) )
431, 42syl 15 1  |-  ( I  e.  V  ->  (
( x  e.  I  |->  J )  e.  X_ x  e.  I  K  <->  A. x  e.  I  J  e.  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801   [_csb 3094    e. cmpt 4093    Fn wfn 5266   -->wf 5267   ` cfv 5271   X_cixp 6833
This theorem is referenced by:  resixpfo  6870  ixpiunwdom  7321  dfac9  7778  prdsbasmpt  13385  prdsbasmpt2  13397  idfucl  13771  fuccocl  13854  fucidcl  13855  invfuc  13864  curf2cl  14021  yonedalem4c  14067  ptpjopn  17322  dfac14lem  17327  ptcnplem  17331  ptcnp  17332  ptcn  17337  ptcmplem2  17763  tmdgsum2  17795  upixp  26506  kelac1  27264
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ixp 6834
  Copyright terms: Public domain W3C validator