MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpteq12dva Structured version   Unicode version

Theorem mpteq12dva 4289
Description: An equality inference for the maps to notation. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
mpteq12dv.1  |-  ( ph  ->  A  =  C )
mpteq12dva.2  |-  ( (
ph  /\  x  e.  A )  ->  B  =  D )
Assertion
Ref Expression
mpteq12dva  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
Distinct variable group:    ph, x
Allowed substitution hints:    A( x)    B( x)    C( x)    D( x)

Proof of Theorem mpteq12dva
StepHypRef Expression
1 mpteq12dv.1 . . 3  |-  ( ph  ->  A  =  C )
21alrimiv 1642 . 2  |-  ( ph  ->  A. x  A  =  C )
3 mpteq12dva.2 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  =  D )
43ralrimiva 2791 . 2  |-  ( ph  ->  A. x  e.  A  B  =  D )
5 mpteq12f 4288 . 2  |-  ( ( A. x  A  =  C  /\  A. x  e.  A  B  =  D )  ->  (
x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
62, 4, 5syl2anc 644 1  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360   A.wal 1550    = wceq 1653    e. wcel 1726   A.wral 2707    e. cmpt 4269
This theorem is referenced by:  mpteq12dv  4290  cidpropd  13941  monpropd  13968  fucpropd  14179  curfpropd  14335  hofpropd  14369  yonffthlem  14384  ofcfval  24486  ovmpt3rab1  28106  elovmpt3rab  28108  elovmptnn0wrd  28214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-ral 2712  df-opab 4270  df-mpt 4271
  Copyright terms: Public domain W3C validator