Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpteq12i Structured version   Unicode version

Theorem mpteq12i 4293
 Description: An equality inference for the maps to notation. (Contributed by Scott Fenton, 27-Oct-2010.) (Revised by Mario Carneiro, 16-Dec-2013.)
Hypotheses
Ref Expression
mpteq12i.1
mpteq12i.2
Assertion
Ref Expression
mpteq12i

Proof of Theorem mpteq12i
StepHypRef Expression
1 mpteq12i.1 . . . 4
21a1i 11 . . 3
3 mpteq12i.2 . . . 4
43a1i 11 . . 3
52, 4mpteq12dv 4287 . 2
65trud 1332 1
 Colors of variables: wff set class Syntax hints:   wtru 1325   wceq 1652   cmpt 4266 This theorem is referenced by:  offres  6319  limcdif  19763  evlsval  19940  dfhnorm2  22624  cdj3lem3  23941  cdj3lem3b  23943  partfun  24087  esumsn  24456  measinb2  24577  trlset  30958 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-ral 2710  df-opab 4267  df-mpt 4268
 Copyright terms: Public domain W3C validator