MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpteq1d Unicode version

Theorem mpteq1d 4101
Description: An equality theorem for the maps to notation. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
mpteq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
mpteq1d  |-  ( ph  ->  ( x  e.  A  |->  C )  =  ( x  e.  B  |->  C ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    C( x)

Proof of Theorem mpteq1d
StepHypRef Expression
1 mpteq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 mpteq1 4100 . 2  |-  ( A  =  B  ->  (
x  e.  A  |->  C )  =  ( x  e.  B  |->  C ) )
31, 2syl 15 1  |-  ( ph  ->  ( x  e.  A  |->  C )  =  ( x  e.  B  |->  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. cmpt 4077
This theorem is referenced by:  catidd  13582  cidpropd  13613  monpropd  13640  curfpropd  14007  off2  23208  esumnul  23427  measdivcst  23552
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-ral 2548  df-opab 4078  df-mpt 4079
  Copyright terms: Public domain W3C validator