Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptfng Unicode version

Theorem mptfng 5369
 Description: The maps-to notation defines a function with domain. (Contributed by Scott Fenton, 21-Mar-2011.)
Hypothesis
Ref Expression
mptfng.1
Assertion
Ref Expression
mptfng
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem mptfng
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eueq 2937 . . 3
21ralbii 2567 . 2
3 mptfng.1 . . . 4
4 df-mpt 4079 . . . 4
53, 4eqtri 2303 . . 3
65fnopabg 5367 . 2
72, 6bitri 240 1
 Colors of variables: wff set class Syntax hints:   wb 176   wa 358   wceq 1623   wcel 1684  weu 2143  wral 2543  cvv 2788  copab 4076   cmpt 4077   wfn 5250 This theorem is referenced by:  fnmpt  5370  fnmpti  5372  mpteqb  5614  bdayfo  24329  fobigcup  24440  cmpdom  25143  mapmapmap  25148  trooo  25394  trinv  25395  ltrooo  25404  rltrooo  25415  ofmpteq  26797  dihf11lem  31456 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-fun 5257  df-fn 5258
 Copyright terms: Public domain W3C validator