MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpv Unicode version

Theorem mpv 8651
Description: Value of multiplication on positive reals. (Contributed by NM, 28-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
mpv  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  =  { x  |  E. y  e.  A  E. z  e.  B  x  =  ( y  .Q  z ) } )
Distinct variable groups:    x, y,
z, A    x, B, y, z

Proof of Theorem mpv
Dummy variables  f 
g  h  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mp 8624 . 2  |-  .P.  =  ( u  e.  P. ,  v  e.  P.  |->  { f  |  E. g  e.  u  E. h  e.  v  f  =  ( g  .Q  h ) } )
2 mulclnq 8587 . 2  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  .Q  h
)  e.  Q. )
31, 2genpv 8639 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  =  { x  |  E. y  e.  A  E. z  e.  B  x  =  ( y  .Q  z ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   {cab 2282   E.wrex 2557  (class class class)co 5874    .Q cmq 8494   P.cnp 8497    .P. cmp 8500
This theorem is referenced by:  mulcompr  8663
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-omul 6500  df-er 6676  df-ni 8512  df-mi 8514  df-lti 8515  df-mpq 8549  df-enq 8551  df-nq 8552  df-erq 8553  df-mq 8555  df-1nq 8556  df-np 8621  df-mp 8624
  Copyright terms: Public domain W3C validator