MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcidb2 Structured version   Unicode version

Theorem mrcidb2 13874
Description: A set is closed iff it contains its closure. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypothesis
Ref Expression
mrcfval.f  |-  F  =  (mrCls `  C )
Assertion
Ref Expression
mrcidb2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X )  ->  ( U  e.  C  <->  ( F `  U )  C_  U
) )

Proof of Theorem mrcidb2
StepHypRef Expression
1 mrcfval.f . . . 4  |-  F  =  (mrCls `  C )
21mrcidb 13871 . . 3  |-  ( C  e.  (Moore `  X
)  ->  ( U  e.  C  <->  ( F `  U )  =  U ) )
32adantr 453 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X )  ->  ( U  e.  C  <->  ( F `  U )  =  U ) )
41mrcssid 13873 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X )  ->  U  C_  ( F `  U
) )
54biantrud 495 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X )  ->  (
( F `  U
)  C_  U  <->  ( ( F `  U )  C_  U  /\  U  C_  ( F `  U ) ) ) )
6 eqss 3349 . . 3  |-  ( ( F `  U )  =  U  <->  ( ( F `  U )  C_  U  /\  U  C_  ( F `  U ) ) )
75, 6syl6rbbr 257 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X )  ->  (
( F `  U
)  =  U  <->  ( F `  U )  C_  U
) )
83, 7bitrd 246 1  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X )  ->  ( U  e.  C  <->  ( F `  U )  C_  U
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1727    C_ wss 3306   ` cfv 5483  Moorecmre 13838  mrClscmrc 13839
This theorem is referenced by:  isacs5  14629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-int 4075  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-id 4527  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-fv 5491  df-mre 13842  df-mrc 13843
  Copyright terms: Public domain W3C validator