MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcun Unicode version

Theorem mrcun 13767
Description: Idempotence of closure under a pair union. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f  |-  F  =  (mrCls `  C )
Assertion
Ref Expression
mrcun  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X  /\  V  C_  X )  ->  ( F `  ( U  u.  V ) )  =  ( F `  (
( F `  U
)  u.  ( F `
 V ) ) ) )

Proof of Theorem mrcun
StepHypRef Expression
1 simp1 957 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X  /\  V  C_  X )  ->  C  e.  (Moore `  X )
)
2 mre1cl 13739 . . . . . . 7  |-  ( C  e.  (Moore `  X
)  ->  X  e.  C )
3 elpw2g 4297 . . . . . . 7  |-  ( X  e.  C  ->  ( U  e.  ~P X  <->  U 
C_  X ) )
42, 3syl 16 . . . . . 6  |-  ( C  e.  (Moore `  X
)  ->  ( U  e.  ~P X  <->  U  C_  X
) )
54biimpar 472 . . . . 5  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X )  ->  U  e.  ~P X )
653adant3 977 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X  /\  V  C_  X )  ->  U  e.  ~P X )
7 elpw2g 4297 . . . . . . 7  |-  ( X  e.  C  ->  ( V  e.  ~P X  <->  V 
C_  X ) )
82, 7syl 16 . . . . . 6  |-  ( C  e.  (Moore `  X
)  ->  ( V  e.  ~P X  <->  V  C_  X
) )
98biimpar 472 . . . . 5  |-  ( ( C  e.  (Moore `  X )  /\  V  C_  X )  ->  V  e.  ~P X )
1093adant2 976 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X  /\  V  C_  X )  ->  V  e.  ~P X )
11 prssi 3890 . . . 4  |-  ( ( U  e.  ~P X  /\  V  e.  ~P X )  ->  { U ,  V }  C_  ~P X )
126, 10, 11syl2anc 643 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X  /\  V  C_  X )  ->  { U ,  V }  C_  ~P X )
13 mrcfval.f . . . 4  |-  F  =  (mrCls `  C )
1413mrcuni 13766 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  { U ,  V }  C_ 
~P X )  -> 
( F `  U. { U ,  V }
)  =  ( F `
 U. ( F
" { U ,  V } ) ) )
151, 12, 14syl2anc 643 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X  /\  V  C_  X )  ->  ( F `  U. { U ,  V } )  =  ( F `  U. ( F " { U ,  V } ) ) )
16 uniprg 3965 . . . 4  |-  ( ( U  e.  ~P X  /\  V  e.  ~P X )  ->  U. { U ,  V }  =  ( U  u.  V ) )
176, 10, 16syl2anc 643 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X  /\  V  C_  X )  ->  U. { U ,  V }  =  ( U  u.  V ) )
1817fveq2d 5665 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X  /\  V  C_  X )  ->  ( F `  U. { U ,  V } )  =  ( F `  ( U  u.  V )
) )
1913mrcf 13754 . . . . . . . 8  |-  ( C  e.  (Moore `  X
)  ->  F : ~P X --> C )
20 ffn 5524 . . . . . . . 8  |-  ( F : ~P X --> C  ->  F  Fn  ~P X
)
2119, 20syl 16 . . . . . . 7  |-  ( C  e.  (Moore `  X
)  ->  F  Fn  ~P X )
22213ad2ant1 978 . . . . . 6  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X  /\  V  C_  X )  ->  F  Fn  ~P X )
23 fnimapr 5719 . . . . . 6  |-  ( ( F  Fn  ~P X  /\  U  e.  ~P X  /\  V  e.  ~P X )  ->  ( F " { U ,  V } )  =  {
( F `  U
) ,  ( F `
 V ) } )
2422, 6, 10, 23syl3anc 1184 . . . . 5  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X  /\  V  C_  X )  ->  ( F " { U ,  V } )  =  {
( F `  U
) ,  ( F `
 V ) } )
2524unieqd 3961 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X  /\  V  C_  X )  ->  U. ( F " { U ,  V } )  =  U. { ( F `  U ) ,  ( F `  V ) } )
26 fvex 5675 . . . . 5  |-  ( F `
 U )  e. 
_V
27 fvex 5675 . . . . 5  |-  ( F `
 V )  e. 
_V
2826, 27unipr 3964 . . . 4  |-  U. {
( F `  U
) ,  ( F `
 V ) }  =  ( ( F `
 U )  u.  ( F `  V
) )
2925, 28syl6eq 2428 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X  /\  V  C_  X )  ->  U. ( F " { U ,  V } )  =  ( ( F `  U
)  u.  ( F `
 V ) ) )
3029fveq2d 5665 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X  /\  V  C_  X )  ->  ( F `  U. ( F
" { U ,  V } ) )  =  ( F `  (
( F `  U
)  u.  ( F `
 V ) ) ) )
3115, 18, 303eqtr3d 2420 1  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X  /\  V  C_  X )  ->  ( F `  ( U  u.  V ) )  =  ( F `  (
( F `  U
)  u.  ( F `
 V ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936    = wceq 1649    e. wcel 1717    u. cun 3254    C_ wss 3256   ~Pcpw 3735   {cpr 3751   U.cuni 3950   "cima 4814    Fn wfn 5382   -->wf 5383   ` cfv 5387  Moorecmre 13727  mrClscmrc 13728
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-fv 5395  df-mre 13731  df-mrc 13732
  Copyright terms: Public domain W3C validator