MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcun Unicode version

Theorem mrcun 13524
Description: Idempotence of closure under a pair union. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f  |-  F  =  (mrCls `  C )
Assertion
Ref Expression
mrcun  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X  /\  V  C_  X )  ->  ( F `  ( U  u.  V ) )  =  ( F `  (
( F `  U
)  u.  ( F `
 V ) ) ) )

Proof of Theorem mrcun
StepHypRef Expression
1 simp1 955 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X  /\  V  C_  X )  ->  C  e.  (Moore `  X )
)
2 mre1cl 13496 . . . . . . 7  |-  ( C  e.  (Moore `  X
)  ->  X  e.  C )
3 elpw2g 4174 . . . . . . 7  |-  ( X  e.  C  ->  ( U  e.  ~P X  <->  U 
C_  X ) )
42, 3syl 15 . . . . . 6  |-  ( C  e.  (Moore `  X
)  ->  ( U  e.  ~P X  <->  U  C_  X
) )
54biimpar 471 . . . . 5  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X )  ->  U  e.  ~P X )
653adant3 975 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X  /\  V  C_  X )  ->  U  e.  ~P X )
7 elpw2g 4174 . . . . . . 7  |-  ( X  e.  C  ->  ( V  e.  ~P X  <->  V 
C_  X ) )
82, 7syl 15 . . . . . 6  |-  ( C  e.  (Moore `  X
)  ->  ( V  e.  ~P X  <->  V  C_  X
) )
98biimpar 471 . . . . 5  |-  ( ( C  e.  (Moore `  X )  /\  V  C_  X )  ->  V  e.  ~P X )
1093adant2 974 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X  /\  V  C_  X )  ->  V  e.  ~P X )
11 prssi 3771 . . . 4  |-  ( ( U  e.  ~P X  /\  V  e.  ~P X )  ->  { U ,  V }  C_  ~P X )
126, 10, 11syl2anc 642 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X  /\  V  C_  X )  ->  { U ,  V }  C_  ~P X )
13 mrcfval.f . . . 4  |-  F  =  (mrCls `  C )
1413mrcuni 13523 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  { U ,  V }  C_ 
~P X )  -> 
( F `  U. { U ,  V }
)  =  ( F `
 U. ( F
" { U ,  V } ) ) )
151, 12, 14syl2anc 642 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X  /\  V  C_  X )  ->  ( F `  U. { U ,  V } )  =  ( F `  U. ( F " { U ,  V } ) ) )
16 uniprg 3842 . . . 4  |-  ( ( U  e.  ~P X  /\  V  e.  ~P X )  ->  U. { U ,  V }  =  ( U  u.  V ) )
176, 10, 16syl2anc 642 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X  /\  V  C_  X )  ->  U. { U ,  V }  =  ( U  u.  V ) )
1817fveq2d 5529 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X  /\  V  C_  X )  ->  ( F `  U. { U ,  V } )  =  ( F `  ( U  u.  V )
) )
1913mrcf 13511 . . . . . . . 8  |-  ( C  e.  (Moore `  X
)  ->  F : ~P X --> C )
20 ffn 5389 . . . . . . . 8  |-  ( F : ~P X --> C  ->  F  Fn  ~P X
)
2119, 20syl 15 . . . . . . 7  |-  ( C  e.  (Moore `  X
)  ->  F  Fn  ~P X )
22213ad2ant1 976 . . . . . 6  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X  /\  V  C_  X )  ->  F  Fn  ~P X )
23 fnimapr 5583 . . . . . 6  |-  ( ( F  Fn  ~P X  /\  U  e.  ~P X  /\  V  e.  ~P X )  ->  ( F " { U ,  V } )  =  {
( F `  U
) ,  ( F `
 V ) } )
2422, 6, 10, 23syl3anc 1182 . . . . 5  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X  /\  V  C_  X )  ->  ( F " { U ,  V } )  =  {
( F `  U
) ,  ( F `
 V ) } )
2524unieqd 3838 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X  /\  V  C_  X )  ->  U. ( F " { U ,  V } )  =  U. { ( F `  U ) ,  ( F `  V ) } )
26 fvex 5539 . . . . 5  |-  ( F `
 U )  e. 
_V
27 fvex 5539 . . . . 5  |-  ( F `
 V )  e. 
_V
2826, 27unipr 3841 . . . 4  |-  U. {
( F `  U
) ,  ( F `
 V ) }  =  ( ( F `
 U )  u.  ( F `  V
) )
2925, 28syl6eq 2331 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X  /\  V  C_  X )  ->  U. ( F " { U ,  V } )  =  ( ( F `  U
)  u.  ( F `
 V ) ) )
3029fveq2d 5529 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X  /\  V  C_  X )  ->  ( F `  U. ( F
" { U ,  V } ) )  =  ( F `  (
( F `  U
)  u.  ( F `
 V ) ) ) )
3115, 18, 303eqtr3d 2323 1  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X  /\  V  C_  X )  ->  ( F `  ( U  u.  V ) )  =  ( F `  (
( F `  U
)  u.  ( F `
 V ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ w3a 934    = wceq 1623    e. wcel 1684    u. cun 3150    C_ wss 3152   ~Pcpw 3625   {cpr 3641   U.cuni 3827   "cima 4692    Fn wfn 5250   -->wf 5251   ` cfv 5255  Moorecmre 13484  mrClscmrc 13485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-mre 13488  df-mrc 13489
  Copyright terms: Public domain W3C validator