MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcuni Unicode version

Theorem mrcuni 13774
Description: Idempotence of closure under a general union. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f  |-  F  =  (mrCls `  C )
Assertion
Ref Expression
mrcuni  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  -> 
( F `  U. U )  =  ( F `  U. ( F " U ) ) )

Proof of Theorem mrcuni
Dummy variables  x  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 444 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  ->  C  e.  (Moore `  X
) )
2 simpll 731 . . . . . . 7  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  /\  s  e.  U )  ->  C  e.  (Moore `  X ) )
3 ssel2 3287 . . . . . . . . 9  |-  ( ( U  C_  ~P X  /\  s  e.  U
)  ->  s  e.  ~P X )
43elpwid 3752 . . . . . . . 8  |-  ( ( U  C_  ~P X  /\  s  e.  U
)  ->  s  C_  X )
54adantll 695 . . . . . . 7  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  /\  s  e.  U )  ->  s  C_  X )
6 mrcfval.f . . . . . . . 8  |-  F  =  (mrCls `  C )
76mrcssid 13770 . . . . . . 7  |-  ( ( C  e.  (Moore `  X )  /\  s  C_  X )  ->  s  C_  ( F `  s
) )
82, 5, 7syl2anc 643 . . . . . 6  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  /\  s  e.  U )  ->  s  C_  ( F `  s ) )
96mrcf 13762 . . . . . . . . . . 11  |-  ( C  e.  (Moore `  X
)  ->  F : ~P X --> C )
10 ffun 5534 . . . . . . . . . . 11  |-  ( F : ~P X --> C  ->  Fun  F )
119, 10syl 16 . . . . . . . . . 10  |-  ( C  e.  (Moore `  X
)  ->  Fun  F )
1211adantr 452 . . . . . . . . 9  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  ->  Fun  F )
13 fdm 5536 . . . . . . . . . . . 12  |-  ( F : ~P X --> C  ->  dom  F  =  ~P X
)
149, 13syl 16 . . . . . . . . . . 11  |-  ( C  e.  (Moore `  X
)  ->  dom  F  =  ~P X )
1514sseq2d 3320 . . . . . . . . . 10  |-  ( C  e.  (Moore `  X
)  ->  ( U  C_ 
dom  F  <->  U  C_  ~P X
) )
1615biimpar 472 . . . . . . . . 9  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  ->  U  C_  dom  F )
17 funfvima2 5914 . . . . . . . . 9  |-  ( ( Fun  F  /\  U  C_ 
dom  F )  -> 
( s  e.  U  ->  ( F `  s
)  e.  ( F
" U ) ) )
1812, 16, 17syl2anc 643 . . . . . . . 8  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  -> 
( s  e.  U  ->  ( F `  s
)  e.  ( F
" U ) ) )
1918imp 419 . . . . . . 7  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  /\  s  e.  U )  ->  ( F `  s
)  e.  ( F
" U ) )
20 elssuni 3986 . . . . . . 7  |-  ( ( F `  s )  e.  ( F " U )  ->  ( F `  s )  C_ 
U. ( F " U ) )
2119, 20syl 16 . . . . . 6  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  /\  s  e.  U )  ->  ( F `  s
)  C_  U. ( F " U ) )
228, 21sstrd 3302 . . . . 5  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  /\  s  e.  U )  ->  s  C_  U. ( F " U ) )
2322ralrimiva 2733 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  ->  A. s  e.  U  s  C_  U. ( F
" U ) )
24 unissb 3988 . . . 4  |-  ( U. U  C_  U. ( F
" U )  <->  A. s  e.  U  s  C_  U. ( F " U
) )
2523, 24sylibr 204 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  ->  U. U  C_  U. ( F " U ) )
266mrcssv 13767 . . . . . . 7  |-  ( C  e.  (Moore `  X
)  ->  ( F `  x )  C_  X
)
2726adantr 452 . . . . . 6  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  -> 
( F `  x
)  C_  X )
2827ralrimivw 2734 . . . . 5  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  ->  A. x  e.  U  ( F `  x ) 
C_  X )
29 ffn 5532 . . . . . . 7  |-  ( F : ~P X --> C  ->  F  Fn  ~P X
)
309, 29syl 16 . . . . . 6  |-  ( C  e.  (Moore `  X
)  ->  F  Fn  ~P X )
31 sseq1 3313 . . . . . . 7  |-  ( s  =  ( F `  x )  ->  (
s  C_  X  <->  ( F `  x )  C_  X
) )
3231ralima 5918 . . . . . 6  |-  ( ( F  Fn  ~P X  /\  U  C_  ~P X
)  ->  ( A. s  e.  ( F " U ) s  C_  X 
<-> 
A. x  e.  U  ( F `  x ) 
C_  X ) )
3330, 32sylan 458 . . . . 5  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  -> 
( A. s  e.  ( F " U
) s  C_  X  <->  A. x  e.  U  ( F `  x ) 
C_  X ) )
3428, 33mpbird 224 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  ->  A. s  e.  ( F " U ) s 
C_  X )
35 unissb 3988 . . . 4  |-  ( U. ( F " U ) 
C_  X  <->  A. s  e.  ( F " U
) s  C_  X
)
3634, 35sylibr 204 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  ->  U. ( F " U
)  C_  X )
376mrcss 13769 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U. U  C_  U. ( F
" U )  /\  U. ( F " U
)  C_  X )  ->  ( F `  U. U )  C_  ( F `  U. ( F
" U ) ) )
381, 25, 36, 37syl3anc 1184 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  -> 
( F `  U. U )  C_  ( F `  U. ( F
" U ) ) )
39 simpll 731 . . . . . . . 8  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  /\  x  e.  U )  ->  C  e.  (Moore `  X ) )
40 elssuni 3986 . . . . . . . . 9  |-  ( x  e.  U  ->  x  C_ 
U. U )
4140adantl 453 . . . . . . . 8  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  /\  x  e.  U )  ->  x  C_  U. U )
42 sspwuni 4118 . . . . . . . . . . 11  |-  ( U 
C_  ~P X  <->  U. U  C_  X )
4342biimpi 187 . . . . . . . . . 10  |-  ( U 
C_  ~P X  ->  U. U  C_  X )
4443adantl 453 . . . . . . . . 9  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  ->  U. U  C_  X )
4544adantr 452 . . . . . . . 8  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  /\  x  e.  U )  ->  U. U  C_  X
)
466mrcss 13769 . . . . . . . 8  |-  ( ( C  e.  (Moore `  X )  /\  x  C_ 
U. U  /\  U. U  C_  X )  -> 
( F `  x
)  C_  ( F `  U. U ) )
4739, 41, 45, 46syl3anc 1184 . . . . . . 7  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  /\  x  e.  U )  ->  ( F `  x
)  C_  ( F `  U. U ) )
4847ralrimiva 2733 . . . . . 6  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  ->  A. x  e.  U  ( F `  x ) 
C_  ( F `  U. U ) )
49 sseq1 3313 . . . . . . . 8  |-  ( s  =  ( F `  x )  ->  (
s  C_  ( F `  U. U )  <->  ( F `  x )  C_  ( F `  U. U ) ) )
5049ralima 5918 . . . . . . 7  |-  ( ( F  Fn  ~P X  /\  U  C_  ~P X
)  ->  ( A. s  e.  ( F " U ) s  C_  ( F `  U. U
)  <->  A. x  e.  U  ( F `  x ) 
C_  ( F `  U. U ) ) )
5130, 50sylan 458 . . . . . 6  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  -> 
( A. s  e.  ( F " U
) s  C_  ( F `  U. U )  <->  A. x  e.  U  ( F `  x ) 
C_  ( F `  U. U ) ) )
5248, 51mpbird 224 . . . . 5  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  ->  A. s  e.  ( F " U ) s 
C_  ( F `  U. U ) )
53 unissb 3988 . . . . 5  |-  ( U. ( F " U ) 
C_  ( F `  U. U )  <->  A. s  e.  ( F " U
) s  C_  ( F `  U. U ) )
5452, 53sylibr 204 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  ->  U. ( F " U
)  C_  ( F `  U. U ) )
556mrcssv 13767 . . . . 5  |-  ( C  e.  (Moore `  X
)  ->  ( F `  U. U )  C_  X )
5655adantr 452 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  -> 
( F `  U. U )  C_  X
)
576mrcss 13769 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  U. ( F " U ) 
C_  ( F `  U. U )  /\  ( F `  U. U ) 
C_  X )  -> 
( F `  U. ( F " U ) )  C_  ( F `  ( F `  U. U ) ) )
581, 54, 56, 57syl3anc 1184 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  -> 
( F `  U. ( F " U ) )  C_  ( F `  ( F `  U. U ) ) )
596mrcidm 13772 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  U. U  C_  X )  -> 
( F `  ( F `  U. U ) )  =  ( F `
 U. U ) )
601, 44, 59syl2anc 643 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  -> 
( F `  ( F `  U. U ) )  =  ( F `
 U. U ) )
6158, 60sseqtrd 3328 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  -> 
( F `  U. ( F " U ) )  C_  ( F `  U. U ) )
6238, 61eqssd 3309 1  |-  ( ( C  e.  (Moore `  X )  /\  U  C_ 
~P X )  -> 
( F `  U. U )  =  ( F `  U. ( F " U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2650    C_ wss 3264   ~Pcpw 3743   U.cuni 3958   dom cdm 4819   "cima 4822   Fun wfun 5389    Fn wfn 5390   -->wf 5391   ` cfv 5395  Moorecmre 13735  mrClscmrc 13736
This theorem is referenced by:  mrcun  13775  isacs4lem  14522
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-fv 5403  df-mre 13739  df-mrc 13740
  Copyright terms: Public domain W3C validator