MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcval Unicode version

Theorem mrcval 13755
Description: Evaluation of the Moore closure of a set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Proof shortened by Fan Zheng, 6-Jun-2016.)
Hypothesis
Ref Expression
mrcfval.f  |-  F  =  (mrCls `  C )
Assertion
Ref Expression
mrcval  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X )  ->  ( F `  U )  =  |^| { s  e.  C  |  U  C_  s } )
Distinct variable groups:    F, s    C, s    X, s    U, s

Proof of Theorem mrcval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 mrcfval.f . . . 4  |-  F  =  (mrCls `  C )
21mrcfval 13753 . . 3  |-  ( C  e.  (Moore `  X
)  ->  F  =  ( x  e.  ~P X  |->  |^| { s  e.  C  |  x  C_  s } ) )
32adantr 452 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X )  ->  F  =  ( x  e. 
~P X  |->  |^| { s  e.  C  |  x 
C_  s } ) )
4 sseq1 3305 . . . . 5  |-  ( x  =  U  ->  (
x  C_  s  <->  U  C_  s
) )
54rabbidv 2884 . . . 4  |-  ( x  =  U  ->  { s  e.  C  |  x 
C_  s }  =  { s  e.  C  |  U  C_  s } )
65inteqd 3990 . . 3  |-  ( x  =  U  ->  |^| { s  e.  C  |  x 
C_  s }  =  |^| { s  e.  C  |  U  C_  s } )
76adantl 453 . 2  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  X )  /\  x  =  U )  ->  |^| { s  e.  C  |  x 
C_  s }  =  |^| { s  e.  C  |  U  C_  s } )
8 mre1cl 13739 . . . 4  |-  ( C  e.  (Moore `  X
)  ->  X  e.  C )
9 elpw2g 4297 . . . 4  |-  ( X  e.  C  ->  ( U  e.  ~P X  <->  U 
C_  X ) )
108, 9syl 16 . . 3  |-  ( C  e.  (Moore `  X
)  ->  ( U  e.  ~P X  <->  U  C_  X
) )
1110biimpar 472 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X )  ->  U  e.  ~P X )
128adantr 452 . . . . 5  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X )  ->  X  e.  C )
13 simpr 448 . . . . 5  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X )  ->  U  C_  X )
14 sseq2 3306 . . . . . 6  |-  ( s  =  X  ->  ( U  C_  s  <->  U  C_  X
) )
1514elrab 3028 . . . . 5  |-  ( X  e.  { s  e.  C  |  U  C_  s }  <->  ( X  e.  C  /\  U  C_  X ) )
1612, 13, 15sylanbrc 646 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X )  ->  X  e.  { s  e.  C  |  U  C_  s } )
17 ne0i 3570 . . . 4  |-  ( X  e.  { s  e.  C  |  U  C_  s }  ->  { s  e.  C  |  U  C_  s }  =/=  (/) )
1816, 17syl 16 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X )  ->  { s  e.  C  |  U  C_  s }  =/=  (/) )
19 intex 4290 . . 3  |-  ( { s  e.  C  |  U  C_  s }  =/=  (/)  <->  |^|
{ s  e.  C  |  U  C_  s }  e.  _V )
2018, 19sylib 189 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X )  ->  |^| { s  e.  C  |  U  C_  s }  e.  _V )
213, 7, 11, 20fvmptd 5742 1  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X )  ->  ( F `  U )  =  |^| { s  e.  C  |  U  C_  s } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2543   {crab 2646   _Vcvv 2892    C_ wss 3256   (/)c0 3564   ~Pcpw 3735   |^|cint 3985    e. cmpt 4200   ` cfv 5387  Moorecmre 13727  mrClscmrc 13728
This theorem is referenced by:  mrcid  13758  mrcss  13761  mrcssid  13762  cycsubg2  14897  aspval2  16325
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-fv 5395  df-mre 13731  df-mrc 13732
  Copyright terms: Public domain W3C validator