MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcval Unicode version

Theorem mrcval 13528
Description: Evaluation of the Moore closure of a set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Proof shortened by Fan Zheng, 6-Jun-2016.)
Hypothesis
Ref Expression
mrcfval.f  |-  F  =  (mrCls `  C )
Assertion
Ref Expression
mrcval  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X )  ->  ( F `  U )  =  |^| { s  e.  C  |  U  C_  s } )
Distinct variable groups:    F, s    C, s    X, s    U, s

Proof of Theorem mrcval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 mrcfval.f . . . 4  |-  F  =  (mrCls `  C )
21mrcfval 13526 . . 3  |-  ( C  e.  (Moore `  X
)  ->  F  =  ( x  e.  ~P X  |->  |^| { s  e.  C  |  x  C_  s } ) )
32adantr 451 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X )  ->  F  =  ( x  e. 
~P X  |->  |^| { s  e.  C  |  x 
C_  s } ) )
4 sseq1 3212 . . . . 5  |-  ( x  =  U  ->  (
x  C_  s  <->  U  C_  s
) )
54rabbidv 2793 . . . 4  |-  ( x  =  U  ->  { s  e.  C  |  x 
C_  s }  =  { s  e.  C  |  U  C_  s } )
65inteqd 3883 . . 3  |-  ( x  =  U  ->  |^| { s  e.  C  |  x 
C_  s }  =  |^| { s  e.  C  |  U  C_  s } )
76adantl 452 . 2  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  X )  /\  x  =  U )  ->  |^| { s  e.  C  |  x 
C_  s }  =  |^| { s  e.  C  |  U  C_  s } )
8 mre1cl 13512 . . . 4  |-  ( C  e.  (Moore `  X
)  ->  X  e.  C )
9 elpw2g 4190 . . . 4  |-  ( X  e.  C  ->  ( U  e.  ~P X  <->  U 
C_  X ) )
108, 9syl 15 . . 3  |-  ( C  e.  (Moore `  X
)  ->  ( U  e.  ~P X  <->  U  C_  X
) )
1110biimpar 471 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X )  ->  U  e.  ~P X )
128adantr 451 . . . . 5  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X )  ->  X  e.  C )
13 simpr 447 . . . . 5  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X )  ->  U  C_  X )
14 sseq2 3213 . . . . . 6  |-  ( s  =  X  ->  ( U  C_  s  <->  U  C_  X
) )
1514elrab 2936 . . . . 5  |-  ( X  e.  { s  e.  C  |  U  C_  s }  <->  ( X  e.  C  /\  U  C_  X ) )
1612, 13, 15sylanbrc 645 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X )  ->  X  e.  { s  e.  C  |  U  C_  s } )
17 ne0i 3474 . . . 4  |-  ( X  e.  { s  e.  C  |  U  C_  s }  ->  { s  e.  C  |  U  C_  s }  =/=  (/) )
1816, 17syl 15 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X )  ->  { s  e.  C  |  U  C_  s }  =/=  (/) )
19 intex 4183 . . 3  |-  ( { s  e.  C  |  U  C_  s }  =/=  (/)  <->  |^|
{ s  e.  C  |  U  C_  s }  e.  _V )
2018, 19sylib 188 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X )  ->  |^| { s  e.  C  |  U  C_  s }  e.  _V )
213, 7, 11, 20fvmptd 5622 1  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X )  ->  ( F `  U )  =  |^| { s  e.  C  |  U  C_  s } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   {crab 2560   _Vcvv 2801    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   |^|cint 3878    e. cmpt 4093   ` cfv 5271  Moorecmre 13500  mrClscmrc 13501
This theorem is referenced by:  mrcid  13531  mrcss  13534  mrcssid  13535  cycsubg2  14670  aspval2  16102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-mre 13504  df-mrc 13505
  Copyright terms: Public domain W3C validator