MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreiincl Unicode version

Theorem mreiincl 13514
Description: A nonempty indexed intersection of closed sets is closed. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
mreiincl  |-  ( ( C  e.  (Moore `  X )  /\  I  =/=  (/)  /\  A. y  e.  I  S  e.  C )  ->  |^|_ y  e.  I  S  e.  C )
Distinct variable groups:    y, I    y, X    y, C
Allowed substitution hint:    S( y)

Proof of Theorem mreiincl
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 dfiin2g 3952 . . 3  |-  ( A. y  e.  I  S  e.  C  ->  |^|_ y  e.  I  S  =  |^| { s  |  E. y  e.  I  s  =  S } )
213ad2ant3 978 . 2  |-  ( ( C  e.  (Moore `  X )  /\  I  =/=  (/)  /\  A. y  e.  I  S  e.  C )  ->  |^|_ y  e.  I  S  =  |^| { s  |  E. y  e.  I  s  =  S } )
3 simp1 955 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  I  =/=  (/)  /\  A. y  e.  I  S  e.  C )  ->  C  e.  (Moore `  X )
)
4 uniiunlem 3273 . . . . 5  |-  ( A. y  e.  I  S  e.  C  ->  ( A. y  e.  I  S  e.  C  <->  { s  |  E. y  e.  I  s  =  S }  C_  C
) )
54ibi 232 . . . 4  |-  ( A. y  e.  I  S  e.  C  ->  { s  |  E. y  e.  I  s  =  S }  C_  C )
653ad2ant3 978 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  I  =/=  (/)  /\  A. y  e.  I  S  e.  C )  ->  { s  |  E. y  e.  I  s  =  S }  C_  C )
7 n0 3477 . . . . . 6  |-  ( I  =/=  (/)  <->  E. y  y  e.  I )
8 nfra1 2606 . . . . . . . 8  |-  F/ y A. y  e.  I  S  e.  C
9 nfre1 2612 . . . . . . . . . 10  |-  F/ y E. y  e.  I 
s  =  S
109nfab 2436 . . . . . . . . 9  |-  F/_ y { s  |  E. y  e.  I  s  =  S }
11 nfcv 2432 . . . . . . . . 9  |-  F/_ y (/)
1210, 11nfne 2552 . . . . . . . 8  |-  F/ y { s  |  E. y  e.  I  s  =  S }  =/=  (/)
138, 12nfim 1781 . . . . . . 7  |-  F/ y ( A. y  e.  I  S  e.  C  ->  { s  |  E. y  e.  I  s  =  S }  =/=  (/) )
14 rsp 2616 . . . . . . . . . 10  |-  ( A. y  e.  I  S  e.  C  ->  ( y  e.  I  ->  S  e.  C ) )
1514com12 27 . . . . . . . . 9  |-  ( y  e.  I  ->  ( A. y  e.  I  S  e.  C  ->  S  e.  C ) )
16 elisset 2811 . . . . . . . . . . 11  |-  ( S  e.  C  ->  E. s 
s  =  S )
17 rspe 2617 . . . . . . . . . . . 12  |-  ( ( y  e.  I  /\  E. s  s  =  S )  ->  E. y  e.  I  E. s 
s  =  S )
1817ex 423 . . . . . . . . . . 11  |-  ( y  e.  I  ->  ( E. s  s  =  S  ->  E. y  e.  I  E. s  s  =  S ) )
1916, 18syl5 28 . . . . . . . . . 10  |-  ( y  e.  I  ->  ( S  e.  C  ->  E. y  e.  I  E. s  s  =  S
) )
20 rexcom4 2820 . . . . . . . . . 10  |-  ( E. y  e.  I  E. s  s  =  S  <->  E. s E. y  e.  I  s  =  S )
2119, 20syl6ib 217 . . . . . . . . 9  |-  ( y  e.  I  ->  ( S  e.  C  ->  E. s E. y  e.  I  s  =  S ) )
2215, 21syld 40 . . . . . . . 8  |-  ( y  e.  I  ->  ( A. y  e.  I  S  e.  C  ->  E. s E. y  e.  I  s  =  S ) )
23 abn0 3486 . . . . . . . 8  |-  ( { s  |  E. y  e.  I  s  =  S }  =/=  (/)  <->  E. s E. y  e.  I 
s  =  S )
2422, 23syl6ibr 218 . . . . . . 7  |-  ( y  e.  I  ->  ( A. y  e.  I  S  e.  C  ->  { s  |  E. y  e.  I  s  =  S }  =/=  (/) ) )
2513, 24exlimi 1813 . . . . . 6  |-  ( E. y  y  e.  I  ->  ( A. y  e.  I  S  e.  C  ->  { s  |  E. y  e.  I  s  =  S }  =/=  (/) ) )
267, 25sylbi 187 . . . . 5  |-  ( I  =/=  (/)  ->  ( A. y  e.  I  S  e.  C  ->  { s  |  E. y  e.  I  s  =  S }  =/=  (/) ) )
2726imp 418 . . . 4  |-  ( ( I  =/=  (/)  /\  A. y  e.  I  S  e.  C )  ->  { s  |  E. y  e.  I  s  =  S }  =/=  (/) )
28273adant1 973 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  I  =/=  (/)  /\  A. y  e.  I  S  e.  C )  ->  { s  |  E. y  e.  I  s  =  S }  =/=  (/) )
29 mreintcl 13513 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  {
s  |  E. y  e.  I  s  =  S }  C_  C  /\  { s  |  E. y  e.  I  s  =  S }  =/=  (/) )  ->  |^| { s  |  E. y  e.  I  s  =  S }  e.  C
)
303, 6, 28, 29syl3anc 1182 . 2  |-  ( ( C  e.  (Moore `  X )  /\  I  =/=  (/)  /\  A. y  e.  I  S  e.  C )  ->  |^| { s  |  E. y  e.  I  s  =  S }  e.  C )
312, 30eqeltrd 2370 1  |-  ( ( C  e.  (Moore `  X )  /\  I  =/=  (/)  /\  A. y  e.  I  S  e.  C )  ->  |^|_ y  e.  I  S  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934   E.wex 1531    = wceq 1632    e. wcel 1696   {cab 2282    =/= wne 2459   A.wral 2556   E.wrex 2557    C_ wss 3165   (/)c0 3468   |^|cint 3878   |^|_ciin 3922   ` cfv 5271  Moorecmre 13500
This theorem is referenced by:  mreriincl  13516  mretopd  16845
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-int 3879  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-mre 13504
  Copyright terms: Public domain W3C validator