MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreincl Unicode version

Theorem mreincl 13787
Description: Two closed sets have a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mreincl  |-  ( ( C  e.  (Moore `  X )  /\  A  e.  C  /\  B  e.  C )  ->  ( A  i^i  B )  e.  C )

Proof of Theorem mreincl
StepHypRef Expression
1 intprg 4052 . . 3  |-  ( ( A  e.  C  /\  B  e.  C )  ->  |^| { A ,  B }  =  ( A  i^i  B ) )
213adant1 975 . 2  |-  ( ( C  e.  (Moore `  X )  /\  A  e.  C  /\  B  e.  C )  ->  |^| { A ,  B }  =  ( A  i^i  B ) )
3 simp1 957 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  A  e.  C  /\  B  e.  C )  ->  C  e.  (Moore `  X )
)
4 prssi 3922 . . . 4  |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  C_  C )
543adant1 975 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  A  e.  C  /\  B  e.  C )  ->  { A ,  B }  C_  C
)
6 prnzg 3892 . . . 4  |-  ( A  e.  C  ->  { A ,  B }  =/=  (/) )
763ad2ant2 979 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  A  e.  C  /\  B  e.  C )  ->  { A ,  B }  =/=  (/) )
8 mreintcl 13783 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  { A ,  B }  C_  C  /\  { A ,  B }  =/=  (/) )  ->  |^| { A ,  B }  e.  C )
93, 5, 7, 8syl3anc 1184 . 2  |-  ( ( C  e.  (Moore `  X )  /\  A  e.  C  /\  B  e.  C )  ->  |^| { A ,  B }  e.  C
)
102, 9eqeltrrd 2487 1  |-  ( ( C  e.  (Moore `  X )  /\  A  e.  C  /\  B  e.  C )  ->  ( A  i^i  B )  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2575    i^i cin 3287    C_ wss 3288   (/)c0 3596   {cpr 3783   |^|cint 4018   ` cfv 5421  Moorecmre 13770
This theorem is referenced by:  submacs  14728  subgacs  14938  nsgacs  14939  lsmmod  15270  lssacs  16006  mreclatdemo  17123  subrgacs  27384  sdrgacs  27385
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-sbc 3130  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-int 4019  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-iota 5385  df-fun 5423  df-fv 5429  df-mre 13774
  Copyright terms: Public domain W3C validator