MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mremre Unicode version

Theorem mremre 13522
Description: The Moore collections of subsets of a space, viewed as a kind of subset of the power set, form a Moore collection in their own right on the power set. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mremre  |-  ( X  e.  V  ->  (Moore `  X )  e.  (Moore `  ~P X ) )

Proof of Theorem mremre
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mresspw 13510 . . . . 5  |-  ( a  e.  (Moore `  X
)  ->  a  C_  ~P X )
2 vex 2804 . . . . . 6  |-  a  e. 
_V
32elpw 3644 . . . . 5  |-  ( a  e.  ~P ~P X  <->  a 
C_  ~P X )
41, 3sylibr 203 . . . 4  |-  ( a  e.  (Moore `  X
)  ->  a  e.  ~P ~P X )
54ssriv 3197 . . 3  |-  (Moore `  X )  C_  ~P ~P X
65a1i 10 . 2  |-  ( X  e.  V  ->  (Moore `  X )  C_  ~P ~P X )
7 ssid 3210 . . . 4  |-  ~P X  C_ 
~P X
87a1i 10 . . 3  |-  ( X  e.  V  ->  ~P X  C_  ~P X )
9 pwidg 3650 . . 3  |-  ( X  e.  V  ->  X  e.  ~P X )
10 intssuni2 3903 . . . . . 6  |-  ( ( a  C_  ~P X  /\  a  =/=  (/) )  ->  |^| a  C_  U. ~P X )
11103adant1 973 . . . . 5  |-  ( ( X  e.  V  /\  a  C_  ~P X  /\  a  =/=  (/) )  ->  |^| a  C_ 
U. ~P X )
12 unipw 4240 . . . . 5  |-  U. ~P X  =  X
1311, 12syl6sseq 3237 . . . 4  |-  ( ( X  e.  V  /\  a  C_  ~P X  /\  a  =/=  (/) )  ->  |^| a  C_  X )
14 elpw2g 4190 . . . . 5  |-  ( X  e.  V  ->  ( |^| a  e.  ~P X 
<-> 
|^| a  C_  X
) )
15143ad2ant1 976 . . . 4  |-  ( ( X  e.  V  /\  a  C_  ~P X  /\  a  =/=  (/) )  ->  ( |^| a  e.  ~P X 
<-> 
|^| a  C_  X
) )
1613, 15mpbird 223 . . 3  |-  ( ( X  e.  V  /\  a  C_  ~P X  /\  a  =/=  (/) )  ->  |^| a  e.  ~P X )
178, 9, 16ismred 13520 . 2  |-  ( X  e.  V  ->  ~P X  e.  (Moore `  X
) )
18 n0 3477 . . . . 5  |-  ( a  =/=  (/)  <->  E. b  b  e.  a )
19 intss1 3893 . . . . . . . . 9  |-  ( b  e.  a  ->  |^| a  C_  b )
2019adantl 452 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  a  C_  (Moore `  X ) )  /\  b  e.  a )  ->  |^| a  C_  b
)
21 simpr 447 . . . . . . . . . 10  |-  ( ( X  e.  V  /\  a  C_  (Moore `  X
) )  ->  a  C_  (Moore `  X )
)
2221sselda 3193 . . . . . . . . 9  |-  ( ( ( X  e.  V  /\  a  C_  (Moore `  X ) )  /\  b  e.  a )  ->  b  e.  (Moore `  X ) )
23 mresspw 13510 . . . . . . . . 9  |-  ( b  e.  (Moore `  X
)  ->  b  C_  ~P X )
2422, 23syl 15 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  a  C_  (Moore `  X ) )  /\  b  e.  a )  ->  b  C_  ~P X
)
2520, 24sstrd 3202 . . . . . . 7  |-  ( ( ( X  e.  V  /\  a  C_  (Moore `  X ) )  /\  b  e.  a )  ->  |^| a  C_  ~P X )
2625ex 423 . . . . . 6  |-  ( ( X  e.  V  /\  a  C_  (Moore `  X
) )  ->  (
b  e.  a  ->  |^| a  C_  ~P X
) )
2726exlimdv 1626 . . . . 5  |-  ( ( X  e.  V  /\  a  C_  (Moore `  X
) )  ->  ( E. b  b  e.  a  ->  |^| a  C_  ~P X ) )
2818, 27syl5bi 208 . . . 4  |-  ( ( X  e.  V  /\  a  C_  (Moore `  X
) )  ->  (
a  =/=  (/)  ->  |^| a  C_ 
~P X ) )
29283impia 1148 . . 3  |-  ( ( X  e.  V  /\  a  C_  (Moore `  X
)  /\  a  =/=  (/) )  ->  |^| a  C_  ~P X )
30 simp2 956 . . . . . . 7  |-  ( ( X  e.  V  /\  a  C_  (Moore `  X
)  /\  a  =/=  (/) )  ->  a  C_  (Moore `  X ) )
3130sselda 3193 . . . . . 6  |-  ( ( ( X  e.  V  /\  a  C_  (Moore `  X )  /\  a  =/=  (/) )  /\  b  e.  a )  ->  b  e.  (Moore `  X )
)
32 mre1cl 13512 . . . . . 6  |-  ( b  e.  (Moore `  X
)  ->  X  e.  b )
3331, 32syl 15 . . . . 5  |-  ( ( ( X  e.  V  /\  a  C_  (Moore `  X )  /\  a  =/=  (/) )  /\  b  e.  a )  ->  X  e.  b )
3433ralrimiva 2639 . . . 4  |-  ( ( X  e.  V  /\  a  C_  (Moore `  X
)  /\  a  =/=  (/) )  ->  A. b  e.  a  X  e.  b )
35 elintg 3886 . . . . 5  |-  ( X  e.  V  ->  ( X  e.  |^| a  <->  A. b  e.  a  X  e.  b ) )
36353ad2ant1 976 . . . 4  |-  ( ( X  e.  V  /\  a  C_  (Moore `  X
)  /\  a  =/=  (/) )  ->  ( X  e.  |^| a  <->  A. b  e.  a  X  e.  b ) )
3734, 36mpbird 223 . . 3  |-  ( ( X  e.  V  /\  a  C_  (Moore `  X
)  /\  a  =/=  (/) )  ->  X  e.  |^| a )
38 simp12 986 . . . . . . 7  |-  ( ( ( X  e.  V  /\  a  C_  (Moore `  X )  /\  a  =/=  (/) )  /\  b  C_ 
|^| a  /\  b  =/=  (/) )  ->  a  C_  (Moore `  X )
)
3938sselda 3193 . . . . . 6  |-  ( ( ( ( X  e.  V  /\  a  C_  (Moore `  X )  /\  a  =/=  (/) )  /\  b  C_ 
|^| a  /\  b  =/=  (/) )  /\  c  e.  a )  ->  c  e.  (Moore `  X )
)
40 simpl2 959 . . . . . . 7  |-  ( ( ( ( X  e.  V  /\  a  C_  (Moore `  X )  /\  a  =/=  (/) )  /\  b  C_ 
|^| a  /\  b  =/=  (/) )  /\  c  e.  a )  ->  b  C_ 
|^| a )
41 intss1 3893 . . . . . . . 8  |-  ( c  e.  a  ->  |^| a  C_  c )
4241adantl 452 . . . . . . 7  |-  ( ( ( ( X  e.  V  /\  a  C_  (Moore `  X )  /\  a  =/=  (/) )  /\  b  C_ 
|^| a  /\  b  =/=  (/) )  /\  c  e.  a )  ->  |^| a  C_  c )
4340, 42sstrd 3202 . . . . . 6  |-  ( ( ( ( X  e.  V  /\  a  C_  (Moore `  X )  /\  a  =/=  (/) )  /\  b  C_ 
|^| a  /\  b  =/=  (/) )  /\  c  e.  a )  ->  b  C_  c )
44 simpl3 960 . . . . . 6  |-  ( ( ( ( X  e.  V  /\  a  C_  (Moore `  X )  /\  a  =/=  (/) )  /\  b  C_ 
|^| a  /\  b  =/=  (/) )  /\  c  e.  a )  ->  b  =/=  (/) )
45 mreintcl 13513 . . . . . 6  |-  ( ( c  e.  (Moore `  X )  /\  b  C_  c  /\  b  =/=  (/) )  ->  |^| b  e.  c )
4639, 43, 44, 45syl3anc 1182 . . . . 5  |-  ( ( ( ( X  e.  V  /\  a  C_  (Moore `  X )  /\  a  =/=  (/) )  /\  b  C_ 
|^| a  /\  b  =/=  (/) )  /\  c  e.  a )  ->  |^| b  e.  c )
4746ralrimiva 2639 . . . 4  |-  ( ( ( X  e.  V  /\  a  C_  (Moore `  X )  /\  a  =/=  (/) )  /\  b  C_ 
|^| a  /\  b  =/=  (/) )  ->  A. c  e.  a  |^| b  e.  c )
48 intex 4183 . . . . . 6  |-  ( b  =/=  (/)  <->  |^| b  e.  _V )
49 elintg 3886 . . . . . 6  |-  ( |^| b  e.  _V  ->  (
|^| b  e.  |^| a 
<-> 
A. c  e.  a 
|^| b  e.  c ) )
5048, 49sylbi 187 . . . . 5  |-  ( b  =/=  (/)  ->  ( |^| b  e.  |^| a  <->  A. c  e.  a  |^| b  e.  c ) )
51503ad2ant3 978 . . . 4  |-  ( ( ( X  e.  V  /\  a  C_  (Moore `  X )  /\  a  =/=  (/) )  /\  b  C_ 
|^| a  /\  b  =/=  (/) )  ->  ( |^| b  e.  |^| a  <->  A. c  e.  a  |^| b  e.  c )
)
5247, 51mpbird 223 . . 3  |-  ( ( ( X  e.  V  /\  a  C_  (Moore `  X )  /\  a  =/=  (/) )  /\  b  C_ 
|^| a  /\  b  =/=  (/) )  ->  |^| b  e.  |^| a )
5329, 37, 52ismred 13520 . 2  |-  ( ( X  e.  V  /\  a  C_  (Moore `  X
)  /\  a  =/=  (/) )  ->  |^| a  e.  (Moore `  X )
)
546, 17, 53ismred 13520 1  |-  ( X  e.  V  ->  (Moore `  X )  e.  (Moore `  ~P X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1531    e. wcel 1696    =/= wne 2459   A.wral 2556   _Vcvv 2801    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   U.cuni 3843   |^|cint 3878   ` cfv 5271  Moorecmre 13500
This theorem is referenced by:  mreacs  13576  mreclatdemo  16849
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-int 3879  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-mre 13504
  Copyright terms: Public domain W3C validator