MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreriincl Unicode version

Theorem mreriincl 13500
Description: The relative intersection of a family of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
mreriincl  |-  ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  ->  ( X  i^i  |^|_ y  e.  I  S )  e.  C
)
Distinct variable groups:    y, I    y, X    y, C
Allowed substitution hint:    S( y)

Proof of Theorem mreriincl
StepHypRef Expression
1 riin0 3975 . . . 4  |-  ( I  =  (/)  ->  ( X  i^i  |^|_ y  e.  I  S )  =  X )
21adantl 452 . . 3  |-  ( ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  /\  I  =  (/) )  ->  ( X  i^i  |^|_ y  e.  I  S )  =  X )
3 mre1cl 13496 . . . 4  |-  ( C  e.  (Moore `  X
)  ->  X  e.  C )
43ad2antrr 706 . . 3  |-  ( ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  /\  I  =  (/) )  ->  X  e.  C )
52, 4eqeltrd 2357 . 2  |-  ( ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  /\  I  =  (/) )  ->  ( X  i^i  |^|_ y  e.  I  S )  e.  C
)
6 mress 13495 . . . . . . 7  |-  ( ( C  e.  (Moore `  X )  /\  S  e.  C )  ->  S  C_  X )
76ex 423 . . . . . 6  |-  ( C  e.  (Moore `  X
)  ->  ( S  e.  C  ->  S  C_  X ) )
87ralimdv 2622 . . . . 5  |-  ( C  e.  (Moore `  X
)  ->  ( A. y  e.  I  S  e.  C  ->  A. y  e.  I  S  C_  X
) )
98imp 418 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  ->  A. y  e.  I  S  C_  X
)
10 riinn0 3976 . . . 4  |-  ( ( A. y  e.  I  S  C_  X  /\  I  =/=  (/) )  ->  ( X  i^i  |^|_ y  e.  I  S )  =  |^|_ y  e.  I  S
)
119, 10sylan 457 . . 3  |-  ( ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  /\  I  =/=  (/) )  ->  ( X  i^i  |^|_ y  e.  I  S )  =  |^|_ y  e.  I  S
)
12 simpll 730 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  /\  I  =/=  (/) )  ->  C  e.  (Moore `  X )
)
13 simpr 447 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  /\  I  =/=  (/) )  ->  I  =/=  (/) )
14 simplr 731 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  /\  I  =/=  (/) )  ->  A. y  e.  I  S  e.  C )
15 mreiincl 13498 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  I  =/=  (/)  /\  A. y  e.  I  S  e.  C )  ->  |^|_ y  e.  I  S  e.  C )
1612, 13, 14, 15syl3anc 1182 . . 3  |-  ( ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  /\  I  =/=  (/) )  ->  |^|_ y  e.  I  S  e.  C )
1711, 16eqeltrd 2357 . 2  |-  ( ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  /\  I  =/=  (/) )  ->  ( X  i^i  |^|_ y  e.  I  S )  e.  C
)
185, 17pm2.61dane 2524 1  |-  ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  ->  ( X  i^i  |^|_ y  e.  I  S )  e.  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543    i^i cin 3151    C_ wss 3152   (/)c0 3455   |^|_ciin 3906   ` cfv 5255  Moorecmre 13484
This theorem is referenced by:  acsfn1  13563  acsfn1c  13564  acsfn2  13565  acsfn1p  27507
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-int 3863  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-mre 13488
  Copyright terms: Public domain W3C validator