MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreriincl Unicode version

Theorem mreriincl 13786
Description: The relative intersection of a family of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
mreriincl  |-  ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  ->  ( X  i^i  |^|_ y  e.  I  S )  e.  C
)
Distinct variable groups:    y, I    y, X    y, C
Allowed substitution hint:    S( y)

Proof of Theorem mreriincl
StepHypRef Expression
1 riin0 4132 . . . 4  |-  ( I  =  (/)  ->  ( X  i^i  |^|_ y  e.  I  S )  =  X )
21adantl 453 . . 3  |-  ( ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  /\  I  =  (/) )  ->  ( X  i^i  |^|_ y  e.  I  S )  =  X )
3 mre1cl 13782 . . . 4  |-  ( C  e.  (Moore `  X
)  ->  X  e.  C )
43ad2antrr 707 . . 3  |-  ( ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  /\  I  =  (/) )  ->  X  e.  C )
52, 4eqeltrd 2486 . 2  |-  ( ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  /\  I  =  (/) )  ->  ( X  i^i  |^|_ y  e.  I  S )  e.  C
)
6 mress 13781 . . . . . . 7  |-  ( ( C  e.  (Moore `  X )  /\  S  e.  C )  ->  S  C_  X )
76ex 424 . . . . . 6  |-  ( C  e.  (Moore `  X
)  ->  ( S  e.  C  ->  S  C_  X ) )
87ralimdv 2753 . . . . 5  |-  ( C  e.  (Moore `  X
)  ->  ( A. y  e.  I  S  e.  C  ->  A. y  e.  I  S  C_  X
) )
98imp 419 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  ->  A. y  e.  I  S  C_  X
)
10 riinn0 4133 . . . 4  |-  ( ( A. y  e.  I  S  C_  X  /\  I  =/=  (/) )  ->  ( X  i^i  |^|_ y  e.  I  S )  =  |^|_ y  e.  I  S
)
119, 10sylan 458 . . 3  |-  ( ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  /\  I  =/=  (/) )  ->  ( X  i^i  |^|_ y  e.  I  S )  =  |^|_ y  e.  I  S
)
12 simpll 731 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  /\  I  =/=  (/) )  ->  C  e.  (Moore `  X )
)
13 simpr 448 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  /\  I  =/=  (/) )  ->  I  =/=  (/) )
14 simplr 732 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  /\  I  =/=  (/) )  ->  A. y  e.  I  S  e.  C )
15 mreiincl 13784 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  I  =/=  (/)  /\  A. y  e.  I  S  e.  C )  ->  |^|_ y  e.  I  S  e.  C )
1612, 13, 14, 15syl3anc 1184 . . 3  |-  ( ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  /\  I  =/=  (/) )  ->  |^|_ y  e.  I  S  e.  C )
1711, 16eqeltrd 2486 . 2  |-  ( ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  /\  I  =/=  (/) )  ->  ( X  i^i  |^|_ y  e.  I  S )  e.  C
)
185, 17pm2.61dane 2653 1  |-  ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  ->  ( X  i^i  |^|_ y  e.  I  S )  e.  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2575   A.wral 2674    i^i cin 3287    C_ wss 3288   (/)c0 3596   |^|_ciin 4062   ` cfv 5421  Moorecmre 13770
This theorem is referenced by:  acsfn1  13849  acsfn1c  13850  acsfn2  13851  acsfn1p  27383
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-sbc 3130  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-int 4019  df-iin 4064  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-iota 5385  df-fun 5423  df-fv 5429  df-mre 13774
  Copyright terms: Public domain W3C validator