MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrieqvlemd Structured version   Unicode version

Theorem mrieqvlemd 13844
Description: In a Moore system, if  Y is a member of  S,  ( S  \  { Y } ) and  S have the same closure if and only if  Y is in the closure of  ( S  \  { Y } ). Used in the proof of mrieqvd 13853 and mrieqv2d 13854. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrieqvlemd.1  |-  ( ph  ->  A  e.  (Moore `  X ) )
mrieqvlemd.2  |-  N  =  (mrCls `  A )
mrieqvlemd.3  |-  ( ph  ->  S  C_  X )
mrieqvlemd.4  |-  ( ph  ->  Y  e.  S )
Assertion
Ref Expression
mrieqvlemd  |-  ( ph  ->  ( Y  e.  ( N `  ( S 
\  { Y }
) )  <->  ( N `  ( S  \  { Y } ) )  =  ( N `  S
) ) )

Proof of Theorem mrieqvlemd
StepHypRef Expression
1 mrieqvlemd.1 . . . . 5  |-  ( ph  ->  A  e.  (Moore `  X ) )
21adantr 452 . . . 4  |-  ( (
ph  /\  Y  e.  ( N `  ( S 
\  { Y }
) ) )  ->  A  e.  (Moore `  X
) )
3 mrieqvlemd.2 . . . 4  |-  N  =  (mrCls `  A )
4 undif1 3695 . . . . . 6  |-  ( ( S  \  { Y } )  u.  { Y } )  =  ( S  u.  { Y } )
5 mrieqvlemd.3 . . . . . . . . . 10  |-  ( ph  ->  S  C_  X )
65adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  Y  e.  ( N `  ( S 
\  { Y }
) ) )  ->  S  C_  X )
76ssdifssd 3477 . . . . . . . 8  |-  ( (
ph  /\  Y  e.  ( N `  ( S 
\  { Y }
) ) )  -> 
( S  \  { Y } )  C_  X
)
82, 3, 7mrcssidd 13840 . . . . . . 7  |-  ( (
ph  /\  Y  e.  ( N `  ( S 
\  { Y }
) ) )  -> 
( S  \  { Y } )  C_  ( N `  ( S  \  { Y } ) ) )
9 simpr 448 . . . . . . . 8  |-  ( (
ph  /\  Y  e.  ( N `  ( S 
\  { Y }
) ) )  ->  Y  e.  ( N `  ( S  \  { Y } ) ) )
109snssd 3935 . . . . . . 7  |-  ( (
ph  /\  Y  e.  ( N `  ( S 
\  { Y }
) ) )  ->  { Y }  C_  ( N `  ( S  \  { Y } ) ) )
118, 10unssd 3515 . . . . . 6  |-  ( (
ph  /\  Y  e.  ( N `  ( S 
\  { Y }
) ) )  -> 
( ( S  \  { Y } )  u. 
{ Y } ) 
C_  ( N `  ( S  \  { Y } ) ) )
124, 11syl5eqssr 3385 . . . . 5  |-  ( (
ph  /\  Y  e.  ( N `  ( S 
\  { Y }
) ) )  -> 
( S  u.  { Y } )  C_  ( N `  ( S  \  { Y } ) ) )
1312unssad 3516 . . . 4  |-  ( (
ph  /\  Y  e.  ( N `  ( S 
\  { Y }
) ) )  ->  S  C_  ( N `  ( S  \  { Y } ) ) )
14 difssd 3467 . . . 4  |-  ( (
ph  /\  Y  e.  ( N `  ( S 
\  { Y }
) ) )  -> 
( S  \  { Y } )  C_  S
)
152, 3, 13, 14mressmrcd 13842 . . 3  |-  ( (
ph  /\  Y  e.  ( N `  ( S 
\  { Y }
) ) )  -> 
( N `  S
)  =  ( N `
 ( S  \  { Y } ) ) )
1615eqcomd 2440 . 2  |-  ( (
ph  /\  Y  e.  ( N `  ( S 
\  { Y }
) ) )  -> 
( N `  ( S  \  { Y }
) )  =  ( N `  S ) )
171, 3, 5mrcssidd 13840 . . . . 5  |-  ( ph  ->  S  C_  ( N `  S ) )
18 mrieqvlemd.4 . . . . 5  |-  ( ph  ->  Y  e.  S )
1917, 18sseldd 3341 . . . 4  |-  ( ph  ->  Y  e.  ( N `
 S ) )
2019adantr 452 . . 3  |-  ( (
ph  /\  ( N `  ( S  \  { Y } ) )  =  ( N `  S
) )  ->  Y  e.  ( N `  S
) )
21 simpr 448 . . 3  |-  ( (
ph  /\  ( N `  ( S  \  { Y } ) )  =  ( N `  S
) )  ->  ( N `  ( S  \  { Y } ) )  =  ( N `
 S ) )
2220, 21eleqtrrd 2512 . 2  |-  ( (
ph  /\  ( N `  ( S  \  { Y } ) )  =  ( N `  S
) )  ->  Y  e.  ( N `  ( S  \  { Y }
) ) )
2316, 22impbida 806 1  |-  ( ph  ->  ( Y  e.  ( N `  ( S 
\  { Y }
) )  <->  ( N `  ( S  \  { Y } ) )  =  ( N `  S
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    \ cdif 3309    u. cun 3310    C_ wss 3312   {csn 3806   ` cfv 5446  Moorecmre 13797  mrClscmrc 13798
This theorem is referenced by:  mrieqvd  13853  mrieqv2d  13854
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-fv 5454  df-mre 13801  df-mrc 13802
  Copyright terms: Public domain W3C validator