MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mriss Unicode version

Theorem mriss 13553
Description: An independent set of a Moore system is a subset of the base set. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
mriss.1  |-  I  =  (mrInd `  A )
Assertion
Ref Expression
mriss  |-  ( ( A  e.  (Moore `  X )  /\  S  e.  I )  ->  S  C_  X )

Proof of Theorem mriss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2296 . . 3  |-  (mrCls `  A )  =  (mrCls `  A )
2 mriss.1 . . 3  |-  I  =  (mrInd `  A )
31, 2ismri 13549 . 2  |-  ( A  e.  (Moore `  X
)  ->  ( S  e.  I  <->  ( S  C_  X  /\  A. x  e.  S  -.  x  e.  ( (mrCls `  A
) `  ( S  \  { x } ) ) ) ) )
43simprbda 606 1  |-  ( ( A  e.  (Moore `  X )  /\  S  e.  I )  ->  S  C_  X )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556    \ cdif 3162    C_ wss 3165   {csn 3653   ` cfv 5271  Moorecmre 13500  mrClscmrc 13501  mrIndcmri 13502
This theorem is referenced by:  mrissd  13554
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-iota 5235  df-fun 5273  df-fv 5279  df-mre 13504  df-mri 13506
  Copyright terms: Public domain W3C validator