MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrisval Unicode version

Theorem mrisval 13625
Description: Value of the set of independent sets of a Moore system. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrisval.1  |-  N  =  (mrCls `  A )
mrisval.2  |-  I  =  (mrInd `  A )
Assertion
Ref Expression
mrisval  |-  ( A  e.  (Moore `  X
)  ->  I  =  { s  e.  ~P X  |  A. x  e.  s  -.  x  e.  ( N `  (
s  \  { x } ) ) } )
Distinct variable groups:    A, s, x    X, s
Allowed substitution hints:    I( x, s)    N( x, s)    X( x)

Proof of Theorem mrisval
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 mrisval.2 . . 3  |-  I  =  (mrInd `  A )
2 fvssunirn 5631 . . . . 5  |-  (Moore `  X )  C_  U. ran Moore
32sseli 3252 . . . 4  |-  ( A  e.  (Moore `  X
)  ->  A  e.  U.
ran Moore )
4 unieq 3915 . . . . . . 7  |-  ( c  =  A  ->  U. c  =  U. A )
54pweqd 3706 . . . . . 6  |-  ( c  =  A  ->  ~P U. c  =  ~P U. A )
6 fveq2 5605 . . . . . . . . . . 11  |-  ( c  =  A  ->  (mrCls `  c )  =  (mrCls `  A ) )
7 mrisval.1 . . . . . . . . . . 11  |-  N  =  (mrCls `  A )
86, 7syl6eqr 2408 . . . . . . . . . 10  |-  ( c  =  A  ->  (mrCls `  c )  =  N )
98fveq1d 5607 . . . . . . . . 9  |-  ( c  =  A  ->  (
(mrCls `  c ) `  ( s  \  {
x } ) )  =  ( N `  ( s  \  {
x } ) ) )
109eleq2d 2425 . . . . . . . 8  |-  ( c  =  A  ->  (
x  e.  ( (mrCls `  c ) `  (
s  \  { x } ) )  <->  x  e.  ( N `  ( s 
\  { x }
) ) ) )
1110notbid 285 . . . . . . 7  |-  ( c  =  A  ->  ( -.  x  e.  (
(mrCls `  c ) `  ( s  \  {
x } ) )  <->  -.  x  e.  ( N `  ( s  \  { x } ) ) ) )
1211ralbidv 2639 . . . . . 6  |-  ( c  =  A  ->  ( A. x  e.  s  -.  x  e.  (
(mrCls `  c ) `  ( s  \  {
x } ) )  <->  A. x  e.  s  -.  x  e.  ( N `  ( s  \  { x } ) ) ) )
135, 12rabeqbidv 2859 . . . . 5  |-  ( c  =  A  ->  { s  e.  ~P U. c  |  A. x  e.  s  -.  x  e.  ( (mrCls `  c ) `  ( s  \  {
x } ) ) }  =  { s  e.  ~P U. A  |  A. x  e.  s  -.  x  e.  ( N `  ( s 
\  { x }
) ) } )
14 df-mri 13583 . . . . 5  |- mrInd  =  ( c  e.  U. ran Moore  |->  { s  e.  ~P U. c  |  A. x  e.  s  -.  x  e.  ( (mrCls `  c
) `  ( s  \  { x } ) ) } )
15 vex 2867 . . . . . . . 8  |-  c  e. 
_V
1615uniex 4595 . . . . . . 7  |-  U. c  e.  _V
1716pwex 4272 . . . . . 6  |-  ~P U. c  e.  _V
1817rabex 4244 . . . . 5  |-  { s  e.  ~P U. c  |  A. x  e.  s  -.  x  e.  ( (mrCls `  c ) `  ( s  \  {
x } ) ) }  e.  _V
1913, 14, 18fvmpt3i 5685 . . . 4  |-  ( A  e.  U. ran Moore  ->  (mrInd `  A )  =  {
s  e.  ~P U. A  |  A. x  e.  s  -.  x  e.  ( N `  (
s  \  { x } ) ) } )
203, 19syl 15 . . 3  |-  ( A  e.  (Moore `  X
)  ->  (mrInd `  A
)  =  { s  e.  ~P U. A  |  A. x  e.  s  -.  x  e.  ( N `  ( s 
\  { x }
) ) } )
211, 20syl5eq 2402 . 2  |-  ( A  e.  (Moore `  X
)  ->  I  =  { s  e.  ~P U. A  |  A. x  e.  s  -.  x  e.  ( N `  (
s  \  { x } ) ) } )
22 mreuni 13595 . . . 4  |-  ( A  e.  (Moore `  X
)  ->  U. A  =  X )
2322pweqd 3706 . . 3  |-  ( A  e.  (Moore `  X
)  ->  ~P U. A  =  ~P X )
24 rabeq 2858 . . 3  |-  ( ~P
U. A  =  ~P X  ->  { s  e. 
~P U. A  |  A. x  e.  s  -.  x  e.  ( N `  ( s  \  {
x } ) ) }  =  { s  e.  ~P X  |  A. x  e.  s  -.  x  e.  ( N `  ( s  \  { x } ) ) } )
2523, 24syl 15 . 2  |-  ( A  e.  (Moore `  X
)  ->  { s  e.  ~P U. A  |  A. x  e.  s  -.  x  e.  ( N `  ( s  \  { x } ) ) }  =  {
s  e.  ~P X  |  A. x  e.  s  -.  x  e.  ( N `  ( s 
\  { x }
) ) } )
2621, 25eqtrd 2390 1  |-  ( A  e.  (Moore `  X
)  ->  I  =  { s  e.  ~P X  |  A. x  e.  s  -.  x  e.  ( N `  (
s  \  { x } ) ) } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1642    e. wcel 1710   A.wral 2619   {crab 2623    \ cdif 3225   ~Pcpw 3701   {csn 3716   U.cuni 3906   ran crn 4769   ` cfv 5334  Moorecmre 13577  mrClscmrc 13578  mrIndcmri 13579
This theorem is referenced by:  ismri  13626
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-br 4103  df-opab 4157  df-mpt 4158  df-id 4388  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-iota 5298  df-fun 5336  df-fv 5342  df-mre 13581  df-mri 13583
  Copyright terms: Public domain W3C validator