MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  msrtri Structured version   Unicode version

Theorem msrtri 18502
Description: Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
mscl.x  |-  X  =  ( Base `  M
)
mscl.d  |-  D  =  ( dist `  M
)
Assertion
Ref Expression
msrtri  |-  ( ( M  e.  MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( abs `  ( ( A D C )  -  ( B D C ) ) )  <_  ( A D B ) )

Proof of Theorem msrtri
StepHypRef Expression
1 mscl.x . . . 4  |-  X  =  ( Base `  M
)
2 mscl.d . . . 4  |-  D  =  ( dist `  M
)
31, 2msmet2 18490 . . 3  |-  ( M  e.  MetSp  ->  ( D  |`  ( X  X.  X
) )  e.  ( Met `  X ) )
4 metrtri 18387 . . 3  |-  ( ( ( D  |`  ( X  X.  X ) )  e.  ( Met `  X
)  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  -> 
( abs `  (
( A ( D  |`  ( X  X.  X
) ) C )  -  ( B ( D  |`  ( X  X.  X ) ) C ) ) )  <_ 
( A ( D  |`  ( X  X.  X
) ) B ) )
53, 4sylan 458 . 2  |-  ( ( M  e.  MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( abs `  ( ( A ( D  |`  ( X  X.  X ) ) C )  -  ( B ( D  |`  ( X  X.  X ) ) C ) ) )  <_  ( A ( D  |`  ( X  X.  X ) ) B ) )
6 simpr1 963 . . . . 5  |-  ( ( M  e.  MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  A  e.  X )
7 simpr3 965 . . . . 5  |-  ( ( M  e.  MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  C  e.  X )
86, 7ovresd 6214 . . . 4  |-  ( ( M  e.  MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A
( D  |`  ( X  X.  X ) ) C )  =  ( A D C ) )
9 simpr2 964 . . . . 5  |-  ( ( M  e.  MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  B  e.  X )
109, 7ovresd 6214 . . . 4  |-  ( ( M  e.  MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( B
( D  |`  ( X  X.  X ) ) C )  =  ( B D C ) )
118, 10oveq12d 6099 . . 3  |-  ( ( M  e.  MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A ( D  |`  ( X  X.  X
) ) C )  -  ( B ( D  |`  ( X  X.  X ) ) C ) )  =  ( ( A D C )  -  ( B D C ) ) )
1211fveq2d 5732 . 2  |-  ( ( M  e.  MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( abs `  ( ( A ( D  |`  ( X  X.  X ) ) C )  -  ( B ( D  |`  ( X  X.  X ) ) C ) ) )  =  ( abs `  (
( A D C )  -  ( B D C ) ) ) )
136, 9ovresd 6214 . 2  |-  ( ( M  e.  MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A
( D  |`  ( X  X.  X ) ) B )  =  ( A D B ) )
145, 12, 133brtr3d 4241 1  |-  ( ( M  e.  MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( abs `  ( ( A D C )  -  ( B D C ) ) )  <_  ( A D B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   class class class wbr 4212    X. cxp 4876    |` cres 4880   ` cfv 5454  (class class class)co 6081    <_ cle 9121    - cmin 9291   abscabs 12039   Basecbs 13469   distcds 13538   Metcme 16687   MetSpcmt 18348
This theorem is referenced by:  nmrtri  18670
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-fz 11044  df-seq 11324  df-exp 11383  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-plusg 13542  df-mulr 13543  df-tset 13548  df-ple 13549  df-ds 13551  df-topgen 13667  df-xrs 13726  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-xms 18350  df-ms 18351
  Copyright terms: Public domain W3C validator