MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mstps Unicode version

Theorem mstps 18001
Description: A metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
mstps  |-  ( M  e.  MetSp  ->  M  e.  TopSp
)

Proof of Theorem mstps
StepHypRef Expression
1 msxms 18000 . 2  |-  ( M  e.  MetSp  ->  M  e.  *
MetSp )
2 xmstps 17999 . 2  |-  ( M  e.  * MetSp  ->  M  e.  TopSp )
31, 2syl 15 1  |-  ( M  e.  MetSp  ->  M  e.  TopSp
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1684   TopSpctps 16634   * MetSpcxme 17882   MetSpcmt 17883
This theorem is referenced by:  ngptps  18124  ngptgp  18152  cnfldtps  18287  cnmpt1ds  18347  cnmpt2ds  18348  rlmbn  18778
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-xp 4695  df-res 4701  df-iota 5219  df-fv 5263  df-xms 17885  df-ms 17886
  Copyright terms: Public domain W3C validator