MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul02 Unicode version

Theorem mul02 8990
Description: Multiplication by  0. Theorem I.6 of [Apostol] p. 18. Based on ideas by Eric Schmidt. (Contributed by NM, 10-Aug-1999.) (Revised by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mul02  |-  ( A  e.  CC  ->  (
0  x.  A )  =  0 )

Proof of Theorem mul02
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 8834 . 2  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
2 recn 8827 . . . . . . 7  |-  ( x  e.  RR  ->  x  e.  CC )
3 ax-icn 8796 . . . . . . . 8  |-  _i  e.  CC
4 recn 8827 . . . . . . . 8  |-  ( y  e.  RR  ->  y  e.  CC )
5 mulcl 8821 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  y  e.  CC )  ->  ( _i  x.  y
)  e.  CC )
63, 4, 5sylancr 644 . . . . . . 7  |-  ( y  e.  RR  ->  (
_i  x.  y )  e.  CC )
7 0cn 8831 . . . . . . . 8  |-  0  e.  CC
8 adddi 8826 . . . . . . . 8  |-  ( ( 0  e.  CC  /\  x  e.  CC  /\  (
_i  x.  y )  e.  CC )  ->  (
0  x.  ( x  +  ( _i  x.  y ) ) )  =  ( ( 0  x.  x )  +  ( 0  x.  (
_i  x.  y )
) ) )
97, 8mp3an1 1264 . . . . . . 7  |-  ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC )  ->  ( 0  x.  ( x  +  ( _i  x.  y ) ) )  =  ( ( 0  x.  x
)  +  ( 0  x.  ( _i  x.  y ) ) ) )
102, 6, 9syl2an 463 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( 0  x.  (
x  +  ( _i  x.  y ) ) )  =  ( ( 0  x.  x )  +  ( 0  x.  ( _i  x.  y
) ) ) )
11 mul02lem2 8989 . . . . . . 7  |-  ( x  e.  RR  ->  (
0  x.  x )  =  0 )
12 mul12 8978 . . . . . . . . . 10  |-  ( ( 0  e.  CC  /\  _i  e.  CC  /\  y  e.  CC )  ->  (
0  x.  ( _i  x.  y ) )  =  ( _i  x.  ( 0  x.  y
) ) )
137, 3, 12mp3an12 1267 . . . . . . . . 9  |-  ( y  e.  CC  ->  (
0  x.  ( _i  x.  y ) )  =  ( _i  x.  ( 0  x.  y
) ) )
144, 13syl 15 . . . . . . . 8  |-  ( y  e.  RR  ->  (
0  x.  ( _i  x.  y ) )  =  ( _i  x.  ( 0  x.  y
) ) )
15 mul02lem2 8989 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
0  x.  y )  =  0 )
1615oveq2d 5874 . . . . . . . 8  |-  ( y  e.  RR  ->  (
_i  x.  ( 0  x.  y ) )  =  ( _i  x.  0 ) )
1714, 16eqtrd 2315 . . . . . . 7  |-  ( y  e.  RR  ->  (
0  x.  ( _i  x.  y ) )  =  ( _i  x.  0 ) )
1811, 17oveqan12d 5877 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( 0  x.  x )  +  ( 0  x.  ( _i  x.  y ) ) )  =  ( 0  +  ( _i  x.  0 ) ) )
1910, 18eqtrd 2315 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( 0  x.  (
x  +  ( _i  x.  y ) ) )  =  ( 0  +  ( _i  x.  0 ) ) )
20 cnre 8834 . . . . . . . 8  |-  ( 0  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  0  =  ( x  +  ( _i  x.  y ) ) )
217, 20ax-mp 8 . . . . . . 7  |-  E. x  e.  RR  E. y  e.  RR  0  =  ( x  +  ( _i  x.  y ) )
22 oveq2 5866 . . . . . . . . . 10  |-  ( 0  =  ( x  +  ( _i  x.  y
) )  ->  (
0  x.  0 )  =  ( 0  x.  ( x  +  ( _i  x.  y ) ) ) )
2322eqeq1d 2291 . . . . . . . . 9  |-  ( 0  =  ( x  +  ( _i  x.  y
) )  ->  (
( 0  x.  0 )  =  ( 0  +  ( _i  x.  0 ) )  <->  ( 0  x.  ( x  +  ( _i  x.  y
) ) )  =  ( 0  +  ( _i  x.  0 ) ) ) )
2419, 23syl5ibrcom 213 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( 0  =  ( x  +  ( _i  x.  y ) )  ->  ( 0  x.  0 )  =  ( 0  +  ( _i  x.  0 ) ) ) )
2524rexlimivv 2672 . . . . . . 7  |-  ( E. x  e.  RR  E. y  e.  RR  0  =  ( x  +  ( _i  x.  y
) )  ->  (
0  x.  0 )  =  ( 0  +  ( _i  x.  0 ) ) )
2621, 25ax-mp 8 . . . . . 6  |-  ( 0  x.  0 )  =  ( 0  +  ( _i  x.  0 ) )
27 0re 8838 . . . . . . 7  |-  0  e.  RR
28 mul02lem2 8989 . . . . . . 7  |-  ( 0  e.  RR  ->  (
0  x.  0 )  =  0 )
2927, 28ax-mp 8 . . . . . 6  |-  ( 0  x.  0 )  =  0
3026, 29eqtr3i 2305 . . . . 5  |-  ( 0  +  ( _i  x.  0 ) )  =  0
3119, 30syl6eq 2331 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( 0  x.  (
x  +  ( _i  x.  y ) ) )  =  0 )
32 oveq2 5866 . . . . 5  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  (
0  x.  A )  =  ( 0  x.  ( x  +  ( _i  x.  y ) ) ) )
3332eqeq1d 2291 . . . 4  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  (
( 0  x.  A
)  =  0  <->  (
0  x.  ( x  +  ( _i  x.  y ) ) )  =  0 ) )
3431, 33syl5ibrcom 213 . . 3  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( A  =  ( x  +  ( _i  x.  y ) )  ->  ( 0  x.  A )  =  0 ) )
3534rexlimivv 2672 . 2  |-  ( E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) )  ->  (
0  x.  A )  =  0 )
361, 35syl 15 1  |-  ( A  e.  CC  ->  (
0  x.  A )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   _ici 8739    + caddc 8740    x. cmul 8742
This theorem is referenced by:  mul01  8991  cnegex2  8994  mul02i  9001  mul02d  9010  bcval5  11330  fsumconst  12252  demoivreALT  12481  cnfldmulg  16406  itg2mulc  19102  dvcmulf  19294  coe0  19637  plymul0or  19661  sineq0  19889  jensen  20283  musumsum  20432  lgsne0  20572  brbtwn2  24533  ax5seglem4  24560  axeuclidlem  24590  axeuclid  24591  axcontlem2  24593  axcontlem4  24595  cnegvex2  25660  expgrowth  27552
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-ltxr 8872
  Copyright terms: Public domain W3C validator