MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul31d Unicode version

Theorem mul31d 9110
Description: Commutative/associative law. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
muld.1  |-  ( ph  ->  A  e.  CC )
addcomd.2  |-  ( ph  ->  B  e.  CC )
addcand.3  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
mul31d  |-  ( ph  ->  ( ( A  x.  B )  x.  C
)  =  ( ( C  x.  B )  x.  A ) )

Proof of Theorem mul31d
StepHypRef Expression
1 muld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 addcomd.2 . 2  |-  ( ph  ->  B  e.  CC )
3 addcand.3 . 2  |-  ( ph  ->  C  e.  CC )
4 mul31 9067 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( ( C  x.  B )  x.  A ) )
51, 2, 3, 4syl3anc 1182 1  |-  ( ph  ->  ( ( A  x.  B )  x.  C
)  =  ( ( C  x.  B )  x.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1642    e. wcel 1710  (class class class)co 5942   CCcc 8822    x. cmul 8829
This theorem is referenced by:  lawcoslem1  20218
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-mulcl 8886  ax-mulcom 8888  ax-mulass 8890
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-rex 2625  df-rab 2628  df-v 2866  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-br 4103  df-iota 5298  df-fv 5342  df-ov 5945
  Copyright terms: Public domain W3C validator