Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulasssr Structured version   Unicode version

Theorem mulasssr 8965
 Description: Multiplication of signed reals is associative. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.)
Assertion
Ref Expression
mulasssr

Proof of Theorem mulasssr
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 8935 . . 3
2 mulsrpr 8951 . . 3
3 mulsrpr 8951 . . 3
4 mulsrpr 8951 . . 3
5 mulsrpr 8951 . . 3
6 mulclpr 8897 . . . . . 6
7 mulclpr 8897 . . . . . 6
8 addclpr 8895 . . . . . 6
96, 7, 8syl2an 464 . . . . 5
109an4s 800 . . . 4
11 mulclpr 8897 . . . . . 6
12 mulclpr 8897 . . . . . 6
13 addclpr 8895 . . . . . 6
1411, 12, 13syl2an 464 . . . . 5
1514an42s 801 . . . 4
1610, 15jca 519 . . 3
17 mulclpr 8897 . . . . . 6
18 mulclpr 8897 . . . . . 6
19 addclpr 8895 . . . . . 6
2017, 18, 19syl2an 464 . . . . 5
2120an4s 800 . . . 4
22 mulclpr 8897 . . . . . 6
23 mulclpr 8897 . . . . . 6
24 addclpr 8895 . . . . . 6
2522, 23, 24syl2an 464 . . . . 5
2625an42s 801 . . . 4
2721, 26jca 519 . . 3
28 vex 2959 . . . 4
29 vex 2959 . . . 4
30 vex 2959 . . . 4
31 mulcompr 8900 . . . 4
32 distrpr 8905 . . . 4
33 vex 2959 . . . 4
34 vex 2959 . . . 4
35 mulasspr 8901 . . . 4
36 vex 2959 . . . 4
37 addcompr 8898 . . . 4
38 addasspr 8899 . . . 4
3928, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38caovlem2 6283 . . 3
4028, 29, 30, 31, 32, 33, 36, 35, 34, 37, 38caovlem2 6283 . . 3
411, 2, 3, 4, 5, 16, 27, 39, 40ecovass 7016 . 2
42 dmmulsr 8961 . . 3
43 0nsr 8954 . . 3
4442, 43ndmovass 6235 . 2
4541, 44pm2.61i 158 1
 Colors of variables: wff set class Syntax hints:   wa 359   w3a 936   wceq 1652   wcel 1725  (class class class)co 6081  cnp 8734   cpp 8736   cmp 8737   cer 8741  cnr 8742   cmr 8747 This theorem is referenced by:  sqgt0sr  8981  recexsr  8982  axmulass  9032 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-omul 6729  df-er 6905  df-ec 6907  df-qs 6911  df-ni 8749  df-pli 8750  df-mi 8751  df-lti 8752  df-plpq 8785  df-mpq 8786  df-ltpq 8787  df-enq 8788  df-nq 8789  df-erq 8790  df-plq 8791  df-mq 8792  df-1nq 8793  df-rq 8794  df-ltnq 8795  df-np 8858  df-plp 8860  df-mp 8861  df-ltp 8862  df-mpr 8933  df-enr 8934  df-nr 8935  df-mr 8937
 Copyright terms: Public domain W3C validator