MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulc1cncf Unicode version

Theorem mulc1cncf 18425
Description: Multiplication by a constant is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
mulc1cncf.1  |-  F  =  ( x  e.  CC  |->  ( A  x.  x
) )
Assertion
Ref Expression
mulc1cncf  |-  ( A  e.  CC  ->  F  e.  ( CC -cn-> CC ) )
Distinct variable group:    x, A
Allowed substitution hint:    F( x)

Proof of Theorem mulc1cncf
Dummy variables  u  t  v  w  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulcl 8837 . . 3  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( A  x.  x
)  e.  CC )
2 mulc1cncf.1 . . 3  |-  F  =  ( x  e.  CC  |->  ( A  x.  x
) )
31, 2fmptd 5700 . 2  |-  ( A  e.  CC  ->  F : CC --> CC )
4 simprr 733 . . . . 5  |-  ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  ->  z  e.  RR+ )
5 simpl 443 . . . . 5  |-  ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  ->  A  e.  CC )
6 simprl 732 . . . . 5  |-  ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  ->  y  e.  CC )
7 mulcn2 12085 . . . . 5  |-  ( ( z  e.  RR+  /\  A  e.  CC  /\  y  e.  CC )  ->  E. t  e.  RR+  E. w  e.  RR+  A. v  e.  CC  A. u  e.  CC  (
( ( abs `  (
v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  <  w )  -> 
( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z ) )
84, 5, 6, 7syl3anc 1182 . . . 4  |-  ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  ->  E. t  e.  RR+  E. w  e.  RR+  A. v  e.  CC  A. u  e.  CC  (
( ( abs `  (
v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  <  w )  -> 
( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z ) )
9 oveq1 5881 . . . . . . . . . . . . . . 15  |-  ( v  =  A  ->  (
v  -  A )  =  ( A  -  A ) )
109fveq2d 5545 . . . . . . . . . . . . . 14  |-  ( v  =  A  ->  ( abs `  ( v  -  A ) )  =  ( abs `  ( A  -  A )
) )
1110breq1d 4049 . . . . . . . . . . . . 13  |-  ( v  =  A  ->  (
( abs `  (
v  -  A ) )  <  t  <->  ( abs `  ( A  -  A
) )  <  t
) )
1211anbi1d 685 . . . . . . . . . . . 12  |-  ( v  =  A  ->  (
( ( abs `  (
v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  <  w )  <->  ( ( abs `  ( A  -  A ) )  < 
t  /\  ( abs `  ( u  -  y
) )  <  w
) ) )
13 oveq1 5881 . . . . . . . . . . . . . . 15  |-  ( v  =  A  ->  (
v  x.  u )  =  ( A  x.  u ) )
1413oveq1d 5889 . . . . . . . . . . . . . 14  |-  ( v  =  A  ->  (
( v  x.  u
)  -  ( A  x.  y ) )  =  ( ( A  x.  u )  -  ( A  x.  y
) ) )
1514fveq2d 5545 . . . . . . . . . . . . 13  |-  ( v  =  A  ->  ( abs `  ( ( v  x.  u )  -  ( A  x.  y
) ) )  =  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) ) )
1615breq1d 4049 . . . . . . . . . . . 12  |-  ( v  =  A  ->  (
( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z  <->  ( abs `  ( ( A  x.  u )  -  ( A  x.  y )
) )  <  z
) )
1712, 16imbi12d 311 . . . . . . . . . . 11  |-  ( v  =  A  ->  (
( ( ( abs `  ( v  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z )  <-> 
( ( ( abs `  ( A  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) )  <  z ) ) )
1817ralbidv 2576 . . . . . . . . . 10  |-  ( v  =  A  ->  ( A. u  e.  CC  ( ( ( abs `  ( v  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z )  <->  A. u  e.  CC  ( ( ( abs `  ( A  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) )  <  z ) ) )
1918rspcv 2893 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( A. v  e.  CC  A. u  e.  CC  (
( ( abs `  (
v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  <  w )  -> 
( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z )  ->  A. u  e.  CC  ( ( ( abs `  ( A  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) )  <  z ) ) )
2019ad2antrr 706 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( t  e.  RR+  /\  w  e.  RR+ ) )  ->  ( A. v  e.  CC  A. u  e.  CC  (
( ( abs `  (
v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  <  w )  -> 
( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z )  ->  A. u  e.  CC  ( ( ( abs `  ( A  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) )  <  z ) ) )
21 subid 9083 . . . . . . . . . . . . . . . 16  |-  ( A  e.  CC  ->  ( A  -  A )  =  0 )
2221ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( A  -  A
)  =  0 )
2322fveq2d 5545 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( abs `  ( A  -  A )
)  =  ( abs `  0 ) )
24 abs0 11786 . . . . . . . . . . . . . 14  |-  ( abs `  0 )  =  0
2523, 24syl6eq 2344 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( abs `  ( A  -  A )
)  =  0 )
26 simprll 738 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
t  e.  RR+ )
2726rpgt0d 10409 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
0  <  t )
2825, 27eqbrtrd 4059 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( abs `  ( A  -  A )
)  <  t )
2928biantrurd 494 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( ( abs `  (
u  -  y ) )  <  w  <->  ( ( abs `  ( A  -  A ) )  < 
t  /\  ( abs `  ( u  -  y
) )  <  w
) ) )
30 simprr 733 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  ->  u  e.  CC )
31 oveq2 5882 . . . . . . . . . . . . . . . 16  |-  ( x  =  u  ->  ( A  x.  x )  =  ( A  x.  u ) )
32 ovex 5899 . . . . . . . . . . . . . . . 16  |-  ( A  x.  u )  e. 
_V
3331, 2, 32fvmpt 5618 . . . . . . . . . . . . . . 15  |-  ( u  e.  CC  ->  ( F `  u )  =  ( A  x.  u ) )
3430, 33syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( F `  u
)  =  ( A  x.  u ) )
35 simplrl 736 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
y  e.  CC )
36 oveq2 5882 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  ( A  x.  x )  =  ( A  x.  y ) )
37 ovex 5899 . . . . . . . . . . . . . . . 16  |-  ( A  x.  y )  e. 
_V
3836, 2, 37fvmpt 5618 . . . . . . . . . . . . . . 15  |-  ( y  e.  CC  ->  ( F `  y )  =  ( A  x.  y ) )
3935, 38syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( F `  y
)  =  ( A  x.  y ) )
4034, 39oveq12d 5892 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( ( F `  u )  -  ( F `  y )
)  =  ( ( A  x.  u )  -  ( A  x.  y ) ) )
4140fveq2d 5545 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  =  ( abs `  ( ( A  x.  u )  -  ( A  x.  y )
) ) )
4241breq1d 4049 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( ( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z  <->  ( abs `  ( ( A  x.  u )  -  ( A  x.  y )
) )  <  z
) )
4329, 42imbi12d 311 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( ( ( abs `  ( u  -  y
) )  <  w  ->  ( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z )  <-> 
( ( ( abs `  ( A  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) )  <  z ) ) )
4443anassrs 629 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ ) )  /\  ( t  e.  RR+  /\  w  e.  RR+ )
)  /\  u  e.  CC )  ->  ( ( ( abs `  (
u  -  y ) )  <  w  -> 
( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z )  <-> 
( ( ( abs `  ( A  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) )  <  z ) ) )
4544ralbidva 2572 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( t  e.  RR+  /\  w  e.  RR+ ) )  ->  ( A. u  e.  CC  ( ( abs `  (
u  -  y ) )  <  w  -> 
( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z )  <->  A. u  e.  CC  ( ( ( abs `  ( A  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) )  <  z ) ) )
4620, 45sylibrd 225 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( t  e.  RR+  /\  w  e.  RR+ ) )  ->  ( A. v  e.  CC  A. u  e.  CC  (
( ( abs `  (
v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  <  w )  -> 
( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z )  ->  A. u  e.  CC  ( ( abs `  (
u  -  y ) )  <  w  -> 
( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) ) )
4746anassrs 629 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ ) )  /\  t  e.  RR+ )  /\  w  e.  RR+ )  -> 
( A. v  e.  CC  A. u  e.  CC  ( ( ( abs `  ( v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  < 
w )  ->  ( abs `  ( ( v  x.  u )  -  ( A  x.  y
) ) )  < 
z )  ->  A. u  e.  CC  ( ( abs `  ( u  -  y
) )  <  w  ->  ( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) ) )
4847reximdva 2668 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  t  e.  RR+ )  ->  ( E. w  e.  RR+  A. v  e.  CC  A. u  e.  CC  ( ( ( abs `  ( v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  < 
w )  ->  ( abs `  ( ( v  x.  u )  -  ( A  x.  y
) ) )  < 
z )  ->  E. w  e.  RR+  A. u  e.  CC  ( ( abs `  ( u  -  y
) )  <  w  ->  ( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) ) )
4948rexlimdva 2680 . . . 4  |-  ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  ->  ( E. t  e.  RR+  E. w  e.  RR+  A. v  e.  CC  A. u  e.  CC  ( ( ( abs `  ( v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  < 
w )  ->  ( abs `  ( ( v  x.  u )  -  ( A  x.  y
) ) )  < 
z )  ->  E. w  e.  RR+  A. u  e.  CC  ( ( abs `  ( u  -  y
) )  <  w  ->  ( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) ) )
508, 49mpd 14 . . 3  |-  ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  ->  E. w  e.  RR+  A. u  e.  CC  ( ( abs `  ( u  -  y
) )  <  w  ->  ( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) )
5150ralrimivva 2648 . 2  |-  ( A  e.  CC  ->  A. y  e.  CC  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  CC  (
( abs `  (
u  -  y ) )  <  w  -> 
( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) )
52 ssid 3210 . . 3  |-  CC  C_  CC
53 elcncf2 18410 . . 3  |-  ( ( CC  C_  CC  /\  CC  C_  CC )  ->  ( F  e.  ( CC -cn-> CC )  <->  ( F : CC
--> CC  /\  A. y  e.  CC  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  CC  (
( abs `  (
u  -  y ) )  <  w  -> 
( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) ) ) )
5452, 52, 53mp2an 653 . 2  |-  ( F  e.  ( CC -cn-> CC )  <->  ( F : CC
--> CC  /\  A. y  e.  CC  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  CC  (
( abs `  (
u  -  y ) )  <  w  -> 
( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) ) )
553, 51, 54sylanbrc 645 1  |-  ( A  e.  CC  ->  F  e.  ( CC -cn-> CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557    C_ wss 3165   class class class wbr 4039    e. cmpt 4093   -->wf 5267   ` cfv 5271  (class class class)co 5874   CCcc 8751   0cc0 8753    x. cmul 8758    < clt 8883    - cmin 9053   RR+crp 10370   abscabs 11735   -cn->ccncf 18396
This theorem is referenced by:  divccncf  18426  sincn  19836  coscn  19837  logcn  20010  mulc1cncfg  27824
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-cncf 18398
  Copyright terms: Public domain W3C validator