MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulclnq Unicode version

Theorem mulclnq 8587
Description: Closure of multiplication on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulclnq  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .Q  B
)  e.  Q. )

Proof of Theorem mulclnq
StepHypRef Expression
1 mulpqnq 8581 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .Q  B
)  =  ( /Q
`  ( A  .pQ  B ) ) )
2 elpqn 8565 . . . 4  |-  ( A  e.  Q.  ->  A  e.  ( N.  X.  N. ) )
3 elpqn 8565 . . . 4  |-  ( B  e.  Q.  ->  B  e.  ( N.  X.  N. ) )
4 mulpqf 8586 . . . . 5  |-  .pQ  :
( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) --> ( N.  X.  N. )
54fovcl 5965 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  .pQ  B )  e.  ( N.  X.  N. ) )
62, 3, 5syl2an 463 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .pQ  B
)  e.  ( N. 
X.  N. ) )
7 nqercl 8571 . . 3  |-  ( ( A  .pQ  B )  e.  ( N.  X.  N. )  ->  ( /Q
`  ( A  .pQ  B ) )  e.  Q. )
86, 7syl 15 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( /Q `  ( A  .pQ  B ) )  e.  Q. )
91, 8eqeltrd 2370 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .Q  B
)  e.  Q. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1696    X. cxp 4703   ` cfv 5271  (class class class)co 5874   N.cnpi 8482    .pQ cmpq 8487   Q.cnq 8490   /Qcerq 8492    .Q cmq 8494
This theorem is referenced by:  ltrnq  8619  mpv  8651  dmmp  8653  mulclprlem  8659  mulclpr  8660  mulasspr  8664  distrlem1pr  8665  distrlem4pr  8666  distrlem5pr  8667  1idpr  8669  prlem934  8673  prlem936  8687  reclem3pr  8689  reclem4pr  8690
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-omul 6500  df-er 6676  df-ni 8512  df-mi 8514  df-lti 8515  df-mpq 8549  df-enq 8551  df-nq 8552  df-erq 8553  df-mq 8555  df-1nq 8556
  Copyright terms: Public domain W3C validator