MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulclpi Structured version   Unicode version

Theorem mulclpi 8770
Description: Closure of multiplication of positive integers. (Contributed by NM, 18-Oct-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulclpi  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  e.  N. )

Proof of Theorem mulclpi
StepHypRef Expression
1 mulpiord 8762 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  =  ( A  .o  B ) )
2 pinn 8755 . . . 4  |-  ( A  e.  N.  ->  A  e.  om )
3 pinn 8755 . . . 4  |-  ( B  e.  N.  ->  B  e.  om )
4 nnmcl 6855 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  B
)  e.  om )
52, 3, 4syl2an 464 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .o  B
)  e.  om )
6 elni2 8754 . . . . . . 7  |-  ( B  e.  N.  <->  ( B  e.  om  /\  (/)  e.  B
) )
76simprbi 451 . . . . . 6  |-  ( B  e.  N.  ->  (/)  e.  B
)
87adantl 453 . . . . 5  |-  ( ( A  e.  N.  /\  B  e.  N. )  -> 
(/)  e.  B )
93adantl 453 . . . . . 6  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  B  e.  om )
102adantr 452 . . . . . 6  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  A  e.  om )
11 elni2 8754 . . . . . . . 8  |-  ( A  e.  N.  <->  ( A  e.  om  /\  (/)  e.  A
) )
1211simprbi 451 . . . . . . 7  |-  ( A  e.  N.  ->  (/)  e.  A
)
1312adantr 452 . . . . . 6  |-  ( ( A  e.  N.  /\  B  e.  N. )  -> 
(/)  e.  A )
14 nnmordi 6874 . . . . . 6  |-  ( ( ( B  e.  om  /\  A  e.  om )  /\  (/)  e.  A )  ->  ( (/)  e.  B  ->  ( A  .o  (/) )  e.  ( A  .o  B
) ) )
159, 10, 13, 14syl21anc 1183 . . . . 5  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( (/)  e.  B  ->  ( A  .o  (/) )  e.  ( A  .o  B
) ) )
168, 15mpd 15 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .o  (/) )  e.  ( A  .o  B
) )
17 ne0i 3634 . . . 4  |-  ( ( A  .o  (/) )  e.  ( A  .o  B
)  ->  ( A  .o  B )  =/=  (/) )
1816, 17syl 16 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .o  B
)  =/=  (/) )
19 elni 8753 . . 3  |-  ( ( A  .o  B )  e.  N.  <->  ( ( A  .o  B )  e. 
om  /\  ( A  .o  B )  =/=  (/) ) )
205, 18, 19sylanbrc 646 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .o  B
)  e.  N. )
211, 20eqeltrd 2510 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  e.  N. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1725    =/= wne 2599   (/)c0 3628   omcom 4845  (class class class)co 6081    .o comu 6722   N.cnpi 8719    .N cmi 8721
This theorem is referenced by:  mulasspi  8774  distrpi  8775  mulcanpi  8777  ltmpi  8781  enqer  8798  addpqf  8821  mulpqf  8823  adderpqlem  8831  mulerpqlem  8832  addassnq  8835  mulassnq  8836  mulcanenq  8837  distrnq  8838  recmulnq  8841  ltsonq  8846  lterpq  8847  ltanq  8848  ltmnq  8849  ltexnq  8852  archnq  8857
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-recs 6633  df-rdg 6668  df-oadd 6728  df-omul 6729  df-ni 8749  df-mi 8751
  Copyright terms: Public domain W3C validator