MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulclprlem Unicode version

Theorem mulclprlem 8643
Description: Lemma to prove downward closure in positive real multiplication. Part of proof of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 14-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
mulclprlem  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
g  .Q  h )  ->  x  e.  ( A  .P.  B ) ) )
Distinct variable groups:    x, g, h    x, A    x, B
Allowed substitution hints:    A( g, h)    B( g, h)

Proof of Theorem mulclprlem
Dummy variables  y 
z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elprnq 8615 . . . . . 6  |-  ( ( A  e.  P.  /\  g  e.  A )  ->  g  e.  Q. )
2 elprnq 8615 . . . . . 6  |-  ( ( B  e.  P.  /\  h  e.  B )  ->  h  e.  Q. )
3 recclnq 8590 . . . . . . . . 9  |-  ( h  e.  Q.  ->  ( *Q `  h )  e. 
Q. )
43adantl 452 . . . . . . . 8  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( *Q `  h
)  e.  Q. )
5 vex 2791 . . . . . . . . 9  |-  x  e. 
_V
6 ovex 5883 . . . . . . . . 9  |-  ( g  .Q  h )  e. 
_V
7 ltmnq 8596 . . . . . . . . 9  |-  ( w  e.  Q.  ->  (
y  <Q  z  <->  ( w  .Q  y )  <Q  (
w  .Q  z ) ) )
8 fvex 5539 . . . . . . . . 9  |-  ( *Q
`  h )  e. 
_V
9 mulcomnq 8577 . . . . . . . . 9  |-  ( y  .Q  z )  =  ( z  .Q  y
)
105, 6, 7, 8, 9caovord2 6032 . . . . . . . 8  |-  ( ( *Q `  h )  e.  Q.  ->  (
x  <Q  ( g  .Q  h )  <->  ( x  .Q  ( *Q `  h
) )  <Q  (
( g  .Q  h
)  .Q  ( *Q
`  h ) ) ) )
114, 10syl 15 . . . . . . 7  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( x  <Q  (
g  .Q  h )  <-> 
( x  .Q  ( *Q `  h ) ) 
<Q  ( ( g  .Q  h )  .Q  ( *Q `  h ) ) ) )
12 mulassnq 8583 . . . . . . . . . 10  |-  ( ( g  .Q  h )  .Q  ( *Q `  h ) )  =  ( g  .Q  (
h  .Q  ( *Q
`  h ) ) )
13 recidnq 8589 . . . . . . . . . . 11  |-  ( h  e.  Q.  ->  (
h  .Q  ( *Q
`  h ) )  =  1Q )
1413oveq2d 5874 . . . . . . . . . 10  |-  ( h  e.  Q.  ->  (
g  .Q  ( h  .Q  ( *Q `  h ) ) )  =  ( g  .Q  1Q ) )
1512, 14syl5eq 2327 . . . . . . . . 9  |-  ( h  e.  Q.  ->  (
( g  .Q  h
)  .Q  ( *Q
`  h ) )  =  ( g  .Q  1Q ) )
16 mulidnq 8587 . . . . . . . . 9  |-  ( g  e.  Q.  ->  (
g  .Q  1Q )  =  g )
1715, 16sylan9eqr 2337 . . . . . . . 8  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( ( g  .Q  h )  .Q  ( *Q `  h ) )  =  g )
1817breq2d 4035 . . . . . . 7  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( ( x  .Q  ( *Q `  h ) )  <Q  ( (
g  .Q  h )  .Q  ( *Q `  h ) )  <->  ( x  .Q  ( *Q `  h
) )  <Q  g
) )
1911, 18bitrd 244 . . . . . 6  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( x  <Q  (
g  .Q  h )  <-> 
( x  .Q  ( *Q `  h ) ) 
<Q  g ) )
201, 2, 19syl2an 463 . . . . 5  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  ( B  e. 
P.  /\  h  e.  B ) )  -> 
( x  <Q  (
g  .Q  h )  <-> 
( x  .Q  ( *Q `  h ) ) 
<Q  g ) )
21 prcdnq 8617 . . . . . 6  |-  ( ( A  e.  P.  /\  g  e.  A )  ->  ( ( x  .Q  ( *Q `  h ) )  <Q  g  ->  ( x  .Q  ( *Q
`  h ) )  e.  A ) )
2221adantr 451 . . . . 5  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  ( B  e. 
P.  /\  h  e.  B ) )  -> 
( ( x  .Q  ( *Q `  h ) )  <Q  g  ->  ( x  .Q  ( *Q
`  h ) )  e.  A ) )
2320, 22sylbid 206 . . . 4  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  ( B  e. 
P.  /\  h  e.  B ) )  -> 
( x  <Q  (
g  .Q  h )  ->  ( x  .Q  ( *Q `  h ) )  e.  A ) )
24 df-mp 8608 . . . . . . . . 9  |-  .P.  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y  .Q  z ) } )
25 mulclnq 8571 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  .Q  z
)  e.  Q. )
2624, 25genpprecl 8625 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( x  .Q  ( *Q `  h ) )  e.  A  /\  h  e.  B )  ->  (
( x  .Q  ( *Q `  h ) )  .Q  h )  e.  ( A  .P.  B
) ) )
2726exp4b 590 . . . . . . 7  |-  ( A  e.  P.  ->  ( B  e.  P.  ->  ( ( x  .Q  ( *Q `  h ) )  e.  A  ->  (
h  e.  B  -> 
( ( x  .Q  ( *Q `  h ) )  .Q  h )  e.  ( A  .P.  B ) ) ) ) )
2827com34 77 . . . . . 6  |-  ( A  e.  P.  ->  ( B  e.  P.  ->  ( h  e.  B  -> 
( ( x  .Q  ( *Q `  h ) )  e.  A  -> 
( ( x  .Q  ( *Q `  h ) )  .Q  h )  e.  ( A  .P.  B ) ) ) ) )
2928imp32 422 . . . . 5  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  h  e.  B ) )  ->  ( (
x  .Q  ( *Q
`  h ) )  e.  A  ->  (
( x  .Q  ( *Q `  h ) )  .Q  h )  e.  ( A  .P.  B
) ) )
3029adantlr 695 . . . 4  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  ( B  e. 
P.  /\  h  e.  B ) )  -> 
( ( x  .Q  ( *Q `  h ) )  e.  A  -> 
( ( x  .Q  ( *Q `  h ) )  .Q  h )  e.  ( A  .P.  B ) ) )
3123, 30syld 40 . . 3  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  ( B  e. 
P.  /\  h  e.  B ) )  -> 
( x  <Q  (
g  .Q  h )  ->  ( ( x  .Q  ( *Q `  h ) )  .Q  h )  e.  ( A  .P.  B ) ) )
3231adantr 451 . 2  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
g  .Q  h )  ->  ( ( x  .Q  ( *Q `  h ) )  .Q  h )  e.  ( A  .P.  B ) ) )
332adantl 452 . . 3  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  ( B  e. 
P.  /\  h  e.  B ) )  ->  h  e.  Q. )
34 mulassnq 8583 . . . . . 6  |-  ( ( x  .Q  ( *Q
`  h ) )  .Q  h )  =  ( x  .Q  (
( *Q `  h
)  .Q  h ) )
35 mulcomnq 8577 . . . . . . . 8  |-  ( ( *Q `  h )  .Q  h )  =  ( h  .Q  ( *Q `  h ) )
3635, 13syl5eq 2327 . . . . . . 7  |-  ( h  e.  Q.  ->  (
( *Q `  h
)  .Q  h )  =  1Q )
3736oveq2d 5874 . . . . . 6  |-  ( h  e.  Q.  ->  (
x  .Q  ( ( *Q `  h )  .Q  h ) )  =  ( x  .Q  1Q ) )
3834, 37syl5eq 2327 . . . . 5  |-  ( h  e.  Q.  ->  (
( x  .Q  ( *Q `  h ) )  .Q  h )  =  ( x  .Q  1Q ) )
39 mulidnq 8587 . . . . 5  |-  ( x  e.  Q.  ->  (
x  .Q  1Q )  =  x )
4038, 39sylan9eq 2335 . . . 4  |-  ( ( h  e.  Q.  /\  x  e.  Q. )  ->  ( ( x  .Q  ( *Q `  h ) )  .Q  h )  =  x )
4140eleq1d 2349 . . 3  |-  ( ( h  e.  Q.  /\  x  e.  Q. )  ->  ( ( ( x  .Q  ( *Q `  h ) )  .Q  h )  e.  ( A  .P.  B )  <-> 
x  e.  ( A  .P.  B ) ) )
4233, 41sylan 457 . 2  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( ( ( x  .Q  ( *Q `  h ) )  .Q  h )  e.  ( A  .P.  B )  <-> 
x  e.  ( A  .P.  B ) ) )
4332, 42sylibd 205 1  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
g  .Q  h )  ->  x  e.  ( A  .P.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1684   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Q.cnq 8474   1Qc1q 8475    .Q cmq 8478   *Qcrq 8479    <Q cltq 8480   P.cnp 8481    .P. cmp 8484
This theorem is referenced by:  mulclpr  8644
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-omul 6484  df-er 6660  df-ni 8496  df-mi 8498  df-lti 8499  df-mpq 8533  df-ltpq 8534  df-enq 8535  df-nq 8536  df-erq 8537  df-mq 8539  df-1nq 8540  df-rq 8541  df-ltnq 8542  df-np 8605  df-mp 8608
  Copyright terms: Public domain W3C validator